精英家教网 > 高中数学 > 题目详情
求下列各式的值
(1)(0.064)- 
1
3
-(-
7
8
0+[(-2)5]- 
2
5
+(
1
16
0.75
(2)
1
2
lg32-
4
3
lg
8
+lg
5
考点:根式与分数指数幂的互化及其化简运算,对数的运算性质
专题:函数的性质及应用
分析:(1)利用指数幂的运算法则即可得出;
(2)利用对数的运算法则即可得出.
解答: 解:(1)原式=0.43×(-
1
3
)
-1+25×(-
2
5
)
+2-4×
3
4

=
5
2
-1+
1
4
+
1
8

=
15
8

(2)原式=lg
32
×
5
2
3
2
×
4
3
=lg
10
=
1
2
点评:本题考查了指数幂与对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个三棱锥的三视图及直观图如图所示,E,F,G分别是A1B,B1C1,AA1的中点,AA1⊥底面ABC
(1)求四棱锥B-ACC1A1的体积;
(2)求证:B1C⊥平面A1BC1
(3)求证:EF∥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=4x+6在x=-1,x=5,x=a处的函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察如图所示的四个几何体:(1)a是棱台;(2)b是圆台;(3)c是棱锥;(4)d不是棱柱.其中判断正确的是(  )
A、(1)(2)B、(3)(4)
C、(3)D、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

若4a2-3b2=12(a,b∈R),则|2a-b|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥C-ABEF,底面ABEF是矩形,FA⊥平面ABC,D是棱AB的中点,点H在棱BE上,且AC=BC=
2
,AB=2,AF=3.
(1)设BH=λBE,若FH⊥平面DHC,求λ的值;
(2)在(1)的条件下,求当λ>
1
2
时,二面角D-CF-H的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2
25
+
y2
9
=1上一点,M、N分别是两圆:(x+4)2+y2=1和(x-4)2+y3=1上的点,则|PM|+|PN|的最小值、最大值的分别为(  )
A、9,12B、8,11
C、8,12D、10,12

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场实行优惠措施,若购物金额x在800元以上(含800元)打8折;若购物金额在500元以上(含500元)打9折,否则不打折.请设计一个算法程序框图,要求输入购物金额x,能输出实际交款额,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个铁球的体积为36π,则该铁球的表面积为
 

查看答案和解析>>

同步练习册答案