精英家教网 > 高中数学 > 题目详情

等差数列{an}满足:a3=1,a8=5,公差为d,则按右侧程序框图运行时,得到的n=
________.

5
分析:先根据条件求出公差,再根据循环结构一次次计算,一直到满足要求即可求出答案.
解答:因为等差数列{an}满足:a3=1,a8=5,
∴5d=a8-a3=4;
∴d=
开始n=1,s=0;
第一次:s=0+=,n=2;
第二次:s=+=,n=3;
第三次:s=+==,n=4;
第四次:s=+=,n=5,
故答案为:5.
点评:本题考查循环结构,解题的关键是理解框图,由框图得出算法,再由所得的算法进行计算得出答案,本题有形入数,是对框图进行考查的主要题型.在近几年的高考中多以选择填空题的形式出现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}满足a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
a
2
n
-1
(n∈N),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9.则公差d=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}满足a3=3,a6=-3,则数列{an}的前n项和Sn的最大值为
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}满足:a3=1,a5=4,则a11=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为0的等差数列{an}满足2a2 +2a12=a72 ,数列{bn}是等比数列,且b7=a7,则b5b9=(  )

查看答案和解析>>

同步练习册答案