精英家教网 > 高中数学 > 题目详情

(本题满分16分)

已知函数.(其中为自然对数的底数).

(1)设曲线处的切线与直线垂直,求的值;(2)若对于任意实数≥0,恒成立,试确定实数的取值范围;(3)当时,是否存在实数,使曲线C:在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

(16分)

(1), 因此处的切线的斜率为

又直线的斜率为, ∴(=-1,

=-1.

(2)∵当≥0时,恒成立,

∴ 先考虑=0,此时,可为任意实数;

  又当>0时,恒成立,

恒成立, 设,则

∈(0,1)时,>0,在(0,1)上单调递增,

∈(1,+∞)时,<0,在(1,+∞)上单调递减,

故当=1时,取得极大值,

∴ 实数的取值范围为

(3)依题意,曲线C的方程为

,则

,则

,故

的最小值为

所以≥0,又,∴>0,

而若曲线C:在点处的切线与轴垂直,

=0,矛盾。

所以,不存在实数,使曲线C:在点处的切线与轴垂直.版权所有:(www..com)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题满分16分)两个数列{an},{bn},满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(参考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求证:{bn}为等差数列的充要条件是{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数是常数,且),对定义域内任意),恒有成立.

(1)求函数的解析式,并写出函数的定义域;

(2)求的取值范围,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)已知数列的前项和为,且.数列中,

 .(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②

查看答案和解析>>

科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)

已知函数

(1)判断并证明上的单调性;

(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;

(3)若上恒成立 , 求的取值范围.

 

查看答案和解析>>

同步练习册答案