精英家教网 > 高中数学 > 题目详情
(2012•西城区二模)已知函数f(x)=x2+bx+1是R上的偶函数,则实数b=
0
0
;不等式f(x-1)<x的解集为
{x|1<x<2}
{x|1<x<2}
分析:根据偶函数定义,f(-x)=f(x)对任意实数x恒成立,比较系数可得实数b的值.因此得到将f(x-1)<x化成一元二次不等式形式,可得所求的解集.
解答:解:∵函数f(x)=x2+bx+1是R上的偶函数,
∴f(-x)=f(x)对任意实数x恒成立,
即(-x)2-bx+1=x2+bx+1对任意实数x恒成立,比较系数得b=0
∴f(x)=x2+1,可得f(x-1)=(x-1)2+1=x2-2x+2,
不等式f(x-1)<x即:x2-3x+2<0,解之得1<x<2
原不等式的解集为:{x|1<x<2}
故答案为:0,{x|1<x<2}
点评:本题给出二次函数为偶函数,求参数b的值并求一元二次不等式的解集,着重考查了函数单调性、奇偶性和一元二次不等式解集等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•西城区二模)已知函数f(x)=cos2(x-
π
6
)-sin2x

(Ⅰ)求f(
π
12
)
的值;
(Ⅱ)若对于任意的x∈[0,
π
2
]
,都有f(x)≤c,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求直线EC与平面ABE所成角的正弦值;
(Ⅲ)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出
EFEA
;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)对数列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:
①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为an=n2,则{an}为3阶递归数列.
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是
35
,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(Ⅰ)求乙得分的分布列和数学期望;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)执行如图所示的程序框图,若输入如下四个函数:
①y=2x
②y=-2x
③f(x)=x+x-1
④f(x)=x-x-1
则输出函数的序号为(  )

查看答案和解析>>

同步练习册答案