精英家教网 > 高中数学 > 题目详情
7.设集合A={x|x2-4x+3≥0},B={x|2x-3≤0},则A∪B=(  )
A.(-∞,1]∪[3,+∞)B.[1,3]C.$[{\frac{3}{2},3}]$D.$({-∞,\frac{3}{2}}]∪[{3,+∞})$

分析 先分别求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x|x2-4x+3≥0}={x|x≤1或x≥3},
B={x|2x-3≤0}={x|x≤$\frac{3}{2}$},
∴A∪B={x|x$≤\frac{3}{2}$或x≥3}=(-∞,$\frac{3}{2}$]∪[3,+∞).
故选:D.

点评 本题考查集合的求法,是基础题,解题时要认真审题,注意并集定义和不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于60m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,$\sqrt{3}$≈1.73.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.盒子中装有大小相同的2个红球和3个白球,从中摸出一个球然后放回袋中再摸出一个球,则两次摸出的球颜色相同的概率是$\frac{13}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出下列判断:
①f(x)=$\sqrt{x-2}+\sqrt{1-x}$有意义;
②已知集合A={x|mx=1},B={1,2},且A⊆B,则实数m=1或m=$\frac{1}{2}$;
③函数y=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},\;\;x<0\end{array}$的图象是抛物线;
④y=f(x)在R是增函数,则y=f(-x)在R是减函数.
其中正确的是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x=1是函数f(x)=ax3-bx-lnx(a>0,b∈R)的一个极值点,则lna与b-1的大小关系是(  )
A.lna>b-1B.lna<b-1C.lna=b-1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为了得到函数y=$\sqrt{2}$cos3x的图象,可以将函数y=sin3x+cos3x的图象向左平移$\frac{π}{12}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(3)的实数x的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,a1=1,且3Sn=an+1-1.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}的前n项和为Tn,a2=b2,T4=1+S3,求$\frac{2{T}_{n}+48}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果集合A={x|ax2+4x+1=0}中只有一个元素,则a的值是(  )
A.0B.4C.0 或4D.不能确定

查看答案和解析>>

同步练习册答案