分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数的导数,通过讨论a的范围,确定函数的单调性,得到g(-a)<0,求出a的范围即可.
解答 解:(1)函数f(x)的定义域是{x|x>0},
f′(x)=lnx+1,(x>0),
令f′(x)<0,解得:0<x<$\frac{1}{e}$,
令f′(x)>0,解得:x>$\frac{1}{e}$,
则函数f(x)在(0,$\frac{1}{e}$)递减,在($\frac{1}{e}$,+∞)递增;
(2)g′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$=$\frac{x+a}{{x}^{2}}$,(x>0),
a≥0时,g′(x)>0恒成立,
函数g(x)是递增函数,不可能有2个零点,舍去;
a<0时,令g′(x)<0,则0<x<-a,
令f′(x)>0,则x>-a,
则函数g(x)在(0,-a)递减,在(-a,+∞)递增,
则函数g(x)有2个零点等价于在(0,+∞)的最小值是g(-a)<0,
解得:-$\frac{1}{e}$<a<0.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{12}$ | B. | $\frac{\sqrt{3}}{12}$ | C. | $\frac{7\sqrt{3}}{12}$ | D. | -$\frac{7\sqrt{3}}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | 3 | C. | 15 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{16}{7}$,4) | B. | ($\frac{16}{7}$,4) | C. | (2,4) | D. | (1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 36π | B. | 64π | C. | 100π | D. | 144π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com