¾«Ó¢¼Ò½ÌÍøÔÚÆ½ÃæÖ±½Ç×ø±êϵÉÏ£¬Éè²»µÈʽ×é
x£¾0
y£¾0
y¡Ü-m(x-3)
£¨n¡ÊN*£©
Ëù±íʾµÄÆ½ÃæÇøÓòΪDn£¬¼ÇDnÄÚµÄÕûµã£¨¼´ºá×ø±êºÍ×Ý×ø±ê¾ù
ΪÕûÊýµÄµã£©µÄ¸öÊýΪan£¨n¡ÊN*£©£®
£¨¢ñ£©Çóa1£¬a2£¬a3²¢²ÂÏëanµÄ±í´ïʽÔÙÓÃÊýѧ¹éÄÉ·¨¼ÓÒÔÖ¤Ã÷£»
£¨¢ò£©ÉèÊýÁÐ{an}µÄǰÏîºÍΪSn£¬ÊýÁÐ{
1
Sn
}µÄǰÏîºÍTn£¬
ÊÇ·ñ´æÔÚ×ÔÈ»Êým£¿Ê¹µÃ¶ÔÒ»ÇÐn¡ÊN*£¬Tn£¾mºã³ÉÁ¢£®Èô´æÔÚ£¬
Çó³ömµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉèÖªDnÄÚµÄÕûµãÔÚÖ±Ïßx=1ºÍx=2ÉÏ£®¼ÇÖ±Ïßy=-mx+3mΪl£¬lÓëÖ±Ïßx=1ºÍx=2µÄ½»µãµÄ×Ý×ø±ê·Ö±ðΪy1¡¢y2£¬ÓÉy1=2n£¬y2=n£¬Öªan=3n£¨n¡ÊN*£©£¬ÔÙÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
£¨¢ò£©ÏÈÇóµÃSn=
3n(n+1)
2
£¬ËùÒÔTn=
2n
3(n+1)
£®ÒòΪ¶ÔÒ»ÇÐn¡ÊN*£¬Tn£¾mºã³ÉÁ¢£¬ËùÒÔm£¼TnµÄ×îСֵ£¬´Ó¶ø¿ÉÇó£®
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨¢ñ£©µ±n=1ʱ£¬D1ΪRt¡÷OAB1µÄÄÚ²¿°üÀ¨Ð±±ß£¬Õâʱa1=3£¬
µ±n=2ʱ£¬D2ΪRt¡÷OAB2µÄÄÚ²¿°üÀ¨Ð±±ß£¬Õâʱa2=3£¬
µ±n=3ʱ£¬D3ΪRt¡÷OAB3µÄÄÚ²¿°üÀ¨Ð±±ß£¬Õâʱa3=9
Óɴ˿ɲÂÏëan=3n
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
£¨1£©µ±n=1ʱ£¬²ÂÏëÏÔÈ»³ÉÁ¢£®
£¨2£©¼ÙÉèµ±n=kʱ£¬²ÂÏë³ÉÁ¢£¬¼´ak=3k
Èçͼ£¬Æ½ÃæÇøÓòDkΪRt¡÷OABkÄÚ²¿°üÀ¨Ð±±ß¡¢Æ½ÃæÇøÓòDk+1ΪRt¡÷¡÷OABk+1ÄÚ²¿°üÀ¨Ð±±ß£¬¡ßÆ½ÃæÇøÓòDk+1±ÈÆ½ÃæÇøÓòDk¶à3¸öÕûµã£¬£¨7·Ö£©
¼´µ±n=k+1ʱ£¬ak+1=3k+3=3£¨k+1£©£¬Õâ¾ÍÊÇ˵µ±n=k+1ʱ£¬²ÂÏëÒ²³ÉÁ¢£¬
ÓÉ£¨1£©¡¢£¨2£©Öªan=3n¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£®£¨8·Ö£©
£¨¢ò£©¡ßan=3n£¬¡àÊýÁÐ{an}ÊÇÊ×ÏîΪ3£¬¹«²îΪ3µÄµÈ²îÊýÁУ¬
¡àSn=
3n(n+1)
2
£®¡à
1
Sn
=
2
3
(
1
n
-
1
n+1
)
£¬¡àTn=
2n
3(n+1)

¡ß¶ÔÒ»ÇÐn¡ÊN*£¬Tn£¾mºã³ÉÁ¢£¬¡àm£¼TnµÄ×îСֵ£®
¡ßTn=
2n
3(n+1)
ÔÚ[1£¬+¡Þ£©ÉÏΪÔöº¯Êý¡àTnµÄ×îСֵΪ
1
3
£¬¡àm£¼
1
3
£¬Âú×ãm£¼
1
3
µÄ×ÔÈ»ÊýΪ0£¬
¡àÂú×ãÌâÉèµÄ×ÔÈ»Êým´æÔÚ£¬ÆäֵΪ0£®£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪעÒ⹫ʽµÄºÏÀíÔËÓúͲ»µÈʽµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒõÓ°ÊǼ¯ºÏP={£¨x£¬y£©|£¨x-cos¦È£©2+£¨y-sin¦È£©2=4£¬0¡Ü¦È¡Ü¦Ð}ÔÚÆ½ÃæÖ±½Ç×ø±êϵÉϱíʾµÄµã¼¯£¬ÔòÒõÓ°ÖмäÐÎÈç¡°Ë®µÎ¡±²¿·ÖµÄÃæ»ýµÈÓÚ£¨¡¡¡¡£©
A¡¢¦Ð+
3
B¡¢
7
3
¦Ð-
3
C¡¢
11
6
¦Ð-
3
D¡¢¦Ð+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵÉÏ£¬Éè²»µÈʽ×é
x£¾0
y£¾0
y¡Ü-n(x-4)
Ëù±íʾµÄÆ½ÃæÇøÓòΪDn£¬¼ÇDnÄÚµÄÕûµã£¨¼´ºá×ø±êºÍ×Ý×ø±ê¾ùΪÕûÊýµÄµã£©µÄ¸öÊýΪan(n¡ÊN*)£®Ôòa1=
6
6
£¬¾­ÍÆÀí¿ÉµÃµ½an=
6n
6n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ïÃû¶þÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÉÏ£¬Éè²»µÈʽ×é
x£¾0
y¡Ý0
y¡Ü-2n(x-3)
£¨n¡ÊN*£©±íʾµÄÆ½ÃæÇøÓòΪDn£¬¼ÇDnÄÚµÄÕûµã£¨ºá×ø±êºÍ×Ý×ø±ê¾ùΪÕûÊýµÄµã£©µÄ¸öÊýΪan£®
£¨1£©Çó³öa1£¬a2£¬a3µÄÖµ£¨²»ÒªÇóд¹ý³Ì£©£»
£¨2£©Ö¤Ã÷ÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨3£©Áîbn=
1
anan+1
£¨n¡ÊN*£©£¬Çób1+b2+¡­+bn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ïÃû¶þÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÉÏ£¬Éè²»µÈʽ×é
x£¾0
y¡Ý0
y¡Ü-2n(x-3)
£¨n¡ÊN*£©±íʾµÄÆ½ÃæÇøÓòΪDn£¬¼ÇDnÄÚµÄÕûµã£¨ºá×ø±êºÍ×Ý×ø±ê¾ùΪÕûÊýµÄµã£©µÄ¸öÊýΪan£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn+1=2bn+an£¬b1=-13£®ÇóÖ¤£ºÊýÁÐ{bn+6n+9}ÊǵȱÈÊýÁУ¬²¢Çó³öÊýÁÐ{bn} µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸