精英家教网 > 高中数学 > 题目详情
已知动点A(x,y)到点F(2,0)和直线x=-2的距离相等.
(1)求动点A的轨迹方程;
(2)记点K(-2,0),若,求△AFK的面积.

【答案】分析:(1)由动点A(x,y)到点F(2,0)和直线x=-2的距离相等,知动点A的轨迹为抛物线,由此能求出动点A的轨迹方程.
(2)过A作AB⊥l,垂足为B,根据抛物线定义,得|AB|=|AF|,由,知△AFK是等腰直角三角形,由此能求出△AFK的面积.
解答:解:(1)∵动点A(x,y)到点F(2,0)和直线x=-2的距离相等,
∴动点A的轨迹为抛物线,其焦点为F(2,0),准线为x=-2
设方程为y2=2px,其中,即p=4…(2分)
所以动点A的轨迹方程为y2=8x.…(2分)
(2)过A作AB⊥l,垂足为B,
根据抛物线定义,得|AB|=|AF|…(2分)
由于,所以△AFK是等腰直角三角形.…(2分)
其中|KF|=4.…(2分)
所以.…(2分)
点评:本题考查动点的轨迹方程的求法,考查三角形的面积的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(
1
2
3
2
)
,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区一模)已知动点A(x,y)到点F(2,0)和直线x=-2的距离相等.
(1)求动点A的轨迹方程;
(2)记点K(-2,0),若|AK|=
2
|AF|
,求△AFK的面积.

查看答案和解析>>

科目:高中数学 来源:2013年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题

已知动点A(x,y)到点F(2,0)和直线x=-2的距离相等.
(1)求动点A的轨迹方程;
(2)记点K(-2,0),若,求△AFK的面积.

查看答案和解析>>

科目:高中数学 来源:2012年山东省菏泽市鄄城一中高三模拟冲刺数学试卷(理科)(解析版) 题型:选择题

已知动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是( )
A.[0,4]
B.[4,10]
C.[10,12]
D.[0,4]和[10,12]

查看答案和解析>>

同步练习册答案