精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2015
2015
(x>0),则f(x)在定义域上的单调性是(  )
A、在(0,+∞)单调递增
B、在(0,+∞)单调递减
C、在(0,1)单调递增,在(1,+∞)单调递减
D、在(0,1)单调递减,(1,+∞)单调递增
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:f′(x)=1-x+x2-x3+…+x2014,利用等比数列的前n项和公式即可得出.
解答: 解:∵x>0,
∴f′(x)=1-x+x2-x3+…+x2014=
(-x)2015-1
-x-1
=
x2015+1
x+1
>0,
∴函数f(x)在(0,+∞)单调递增.
故选:A.
点评:本题考查了导数的运算法则、等比数列的前n项和公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)化简:
sin(2π-α)•tan(
π
2
+α)•cot(
2
-α)
cos(2π+α)•cot(
2
+α)

(2)已知sinx-sin(
2
-x)=
2
,求tanx+tan(
2
-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

将全体正偶数排成一个数阵:按照如图排列的规律,则第10行从左到右的第4个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将27个边长为a的小正方体拼成一个大正方体,则表面积减少了
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过圆(x+4)2+y2=16的圆心C且垂直与x轴,点F的坐标是(-6,0),点G是圆上任意一点.
(1)若直线FG与直线l相交 于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(2)过点F人作两条互相垂直的弦,设其弦长为m.n,求m+n的最大值;
(3)在平面上是否存在定点P,使得对圆C上任意的点G,都有|GP|=2|GF|?若存在,求出点P的坐标;若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x3-x=0},则集合A的子集有(  )个.
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,当x≥0时,f(x)=
sinπx,x∈[0,
1
2
]
log
1
2
x,x∈(
1
2
,+∞)
,则不等式f(x)≤
1
2
解集为(  )
A、[-
2
1
6
]∪[
2
2
,+∞)
B、[-
2
1
3
]∪[
2
2
,+∞)
C、[-
2
,-
1
6
]∪[
1
6
2
]
D、[-
2
1
6
]∪[
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=2
6
,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若样本数据x1,x2,x3,x10的平均数是10,方差是2,则数据2x1+1,2x2+1,2x3+1,2x10+1的平均数与方差分别是(  )
A、20,8B、21,12
C、22,2D、21,8

查看答案和解析>>

同步练习册答案