精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{|x+1|,x<1}\\{-{x}^{2}+2x+1,x≥1}\end{array}\right.$,则函数g(x)=2|x|f(x)-2的零点个数为(  )
A.0B.1C.2D.3

分析 函数g(x)=2|x|f(x)-2的零点个数转化为方程g(x)=2|x|f(x)-2=0的解的个数,再转化为函数f(x)与y=$\frac{2}{{2}^{|x|}}$的图象的交点的个数,从而解得.

解答 解:令g(x)=2|x|f(x)-2=0得,
y=$\frac{2}{{2}^{|x|}}$,
作函数f(x)与y=$\frac{2}{{2}^{|x|}}$的图象如下,
结合图象可知,函数的图象有两个不同的交点,
故函数g(x)=2|x|f(x)-2的零点个数为3,
故选:D.

点评 本题考查了函数的零点与方程的根,方程的根与函数的图象的交点的关系应用,考查了数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5.
(1)求f(x)
(2)当x∈[1,3]时,g(x)有最大值13,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.面积为Q的正方形,绕其一边旋转一周,则所得几何体的侧面积为2πQ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,在该四棱锥内部或表面任取一点O,则四棱锥O-ABCD的体积不小于$\frac{2}{3}$的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等差数列{an}中,a1,a4025是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的极值点,则log2a2013等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$x2-(2a+2)x+(2a+1)lnx.
(1)讨论函数y=f(x)的单调性;
(2)对任意的a∈[$\frac{1}{2}$,2],x1,x2∈[1,2](x1≠x2),恒有|f(x1)-f(x2)|<λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某几何体的三视图如图所示,其侧视图是一个边长为2的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为2,表面积为2$\sqrt{6}$+6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是(  )
A.非p或qB.p且qC.非p且非qD.非p或非q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=sinx-2\sqrt{3}{sin^2}\frac{x}{2}$
(1)求f(x)的最小正周期和单调减区间;
(2)求f(x)在区间$[0,\frac{2}{3}π]$上的最小值.

查看答案和解析>>

同步练习册答案