精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式[(1+2x)-|1-2x|]的图象大致为


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:已知函数的解析式f(x)=[(1+2x)-|1-2x|]过点(0,1),当x>0时,2x>1,去掉绝对值进行化简,再将x=-1代入验证,从而进行判断;
解答:∵函数f(x)=[(1+2x)-|1-2x|],
当x>0,可得2x>1,此时f(x)=[(1+2x)-|1-2x|]=×[1+2x-(2x-1)]=1;
当x=-1时,f(x)=×[+1-(1-)]=<1,
综上可选A;
故选A;
点评:此题主要考查指数函数的性质及其图象,解题过程中用到了特殊值进行进行判断,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

可推得函数f(x)=ax2-2x+1在区间[1,2]上为增函数的一个条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2x4x+1
(a∈R).
(1)判断函数f(x)的奇偶性;
(2)判断并证明函数f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx-1满足以下两个条件:
①函数f(x)的值域为[-2,+∞);
②任意x∈R,恒有f(-1+x)=f(-1-x)成立.
(1)求f(x)的解析式;
(2)设F(x)=f(-x)-kf(x),若F(x)在[-2,2]上是减函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-1,x∈R,a∈R.
(Ⅰ) 设对任意x∈(-∞,0],f(x)≤x恒成立,求a的取值范围;
(Ⅱ) 是否存在实数a,使得满足f(t)=4t2-2alnt的实数t有且仅有一个?若存在,求出所有这样的a;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2ax+1在区间[-1,2]上的最小值是f(2),则a的取值范围是
a≥2
a≥2

查看答案和解析>>

同步练习册答案