精英家教网 > 高中数学 > 题目详情
精英家教网如图,在正三棱柱ABC-A1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线与AA1的交点记为M,求:
(I)三棱柱的侧面展开图的对角线长
(II)该最短路线的长及
A1MAM
的值
(III)平面C1MB与平面ABC所成二面角(锐角)的大小
分析:(1)正三棱柱ABC-A1B1C1的侧面展开图是长为6,宽为2的矩形,直接可以求出对角线长;
(2)将侧面AA1B1B绕棱AA1旋转120°使其与侧面AA1C1C在同一平面上,点B运动到点D的位置,连接DC1交AA1于M,则DC1就是由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线,求出DC1
A1M
AM
的值即可;
(3)连接DB,C1B,可证∠C1BC就是平面C1MB与平面ABC所成二面角的平面角,在三角形C1BC中求出此角.
解答:精英家教网解:(I)正三棱柱ABC-A1B1C1的侧面展开图是长为6,宽为2的矩形
其对角线长为
62+22
=2
10


(II)如图,将侧面AA1B1B绕棱AA1旋转120°使其与侧面AA1C1C在同一平面上,点B运动到点D的位置,连接DC1交AA1于M,则DC1就是由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线,其长为
DC2+CC12
=
42+22
=2
5
∵△DMA≌△C1MA1,∴AM=A1M
A1M
AM
=1


(III)连接DB,C1B,
则DB就是平面C1MB与平面ABC的交线在△DCB中,
∵∠DBC=∠CBA+∠ABD=60°+30°=90°,
∴CB⊥DB,
又C1C⊥平面CBD,
由三垂线定理得C1B⊥DB,∴∠C1BC就是平面C1MB与平面ABC所成二面角的平面角(锐角),
∵侧面C1B1BC是正方形,∴∠C1BC=45°,
故平面C1MB与平面ABC所成的二面角(锐角)为45°.
点评:本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小为60°,则点C到平面C1AB的距离为(  )
A、
3
4
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AA1CC1所成的角为a,则sina=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面DEG与底面ABC所成锐二面角的正切值;
(Ⅲ)求B1到截面DEG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中点,点N在AA1上,AN=
14

(Ⅰ)求BC1与侧面ACC1A1所成角的大小;
(Ⅱ)求二面角C1-BM-C的正切值;
(Ⅲ)证明MN⊥BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)如图,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延长线上一点,过A、B、P三点的平面交FD于M,交EF于N.
(I)求证:MN∥平面CDE:
(II)当平面PAB⊥平面CDE时,求三梭台MNF-ABC的体积.

查看答案和解析>>

同步练习册答案