精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面ABCD,底面ABCD是直角梯形,,且,点E是线段PD的中点.

求证:平面PAB

求证:平面平面PCD

当直线PC与平面PAD所成的角大小为时,求线段PA的长.

【答案】(I) 证明见解析 (II) 证明见解析(III)

【解析】

取线段PA的中点F,连接EFBF,得出,四边形BCEF是平行四边形,

即证,得出平面PAB

由题意得出,可证平面PAC,从而证明平面平面PCD

取线段AD中点H,连接CHPH,可得,即证平面PAD;得出是直线PC与平面PAD所成的角,从而求得PA的值.

证明:取线段PA的中点F,连接EFBF

,且

所以四边形BCEF是平行四边形,

所以

平面PAB平面PAB

所以平面PAB

证明:由题意得,,又

所以

平面ABCD

所以,且

所以平面PAC

平面PCD

所以平面平面PCD

解:取线段AD中点H,连接CHPH

可得,且

所以平面PAD

所以是直线PC与平面PAD所成的角,

所以

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处的切线斜率为.

(1)求实数的值,并讨论函数的单调性;

(2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,是给定的正整数,

(Ⅰ)若,写出的值;

(Ⅱ)证明:数列中存在值为的项;

(Ⅲ)证明:若互质,则数列中必有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,是给定的正整数,

(Ⅰ)若,写出的值;

(Ⅱ)证明:数列中存在值为的项;

(Ⅲ)证明:若互质,则数列中必有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面立角坐标系中,过点的圆的圆心轴上,且与过原点倾斜角为的直线相切.

(1)求圆的标准方程;

(2)在直线上,过点作圆的切线,切点分别为,求经过四点的圆所过的定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(x2aexaR).

1)若函数fx)有两个不同的极值点,求实数a的取值范围;

2)当a0时,若关于x的方程fx)=m存在三个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:

查看答案和解析>>

同步练习册答案