精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为A1B1、A1D1的中点.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证:DF∥平面ACE.
分析:(Ⅰ)证明:在长方体ABCD-A1B1C1D1中,由BC⊥侧面ABB1A1,可得AE⊥BC;再利用勾股定理证明AE⊥EB;由直线和平面垂直的判定定理 AE⊥平面BCE.(Ⅱ)连BD交AC于O,连OE,利用三角形中位线性质可得EF∥
1
2
B1D1,且EF=
1
2
B1D1;再由DO∥
1
2
B1D1,且DO=
1
2
B1D1,可得四边形DOEF是平行四边形,可得 DF∥OE.再利用直线和平面平行的判定定理可得DF∥平面ACE.
解答:解:(Ⅰ)证明:在长方体ABCD-A1B1C1D1中,BC⊥侧面ABB1A1
∵AE?侧面ABB1A1,∴AE⊥BC.…(3分)
在△ABE中,AB=2a,AE=BE=
2
a,∴AB2=AE2+BE2,∴AE⊥EB.…(6分)
又BC∩BE=B,∴AE⊥平面BCE.      …(7分)
(Ⅱ)证明:连EF、B1D1,连BD交AC于O,连OE,
∵E、F分别为A1B1、A1D1的中点,∴EF∥
1
2
B1D1,且EF=
1
2
B1D1
∵在长方体ABCD-A1B1C1D1中,DO∥
1
2
B1D1,且DO=
1
2
B1D1
∴DO∥EF,且 DO=EF,∴四边形DOEF是平行四边形,…(10分)
∴DF∥OE.     …(11分)
又∵OE?平面ACE,DF不在平面ACE内,∴DF∥平面ACE.  …(13分)
点评:本题主要考查直线和平面垂直的判定定理、直线和平面平行的判定定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,三棱锥A1-ABC的面是直角三角形的个数为:
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,定义八个顶点都在某圆柱的底面圆周上的长方体叫做圆柱的内接长方体,圆柱也叫长方体的外接圆柱.设长方体ABCD-A1B1C1D1的长、宽、高分别为a,b,c(其中a>b>c),那么该长方体的外接圆柱侧面积的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题

(文科做)(本题满分14分)如图,在长方体

ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1EA1D;

(2)当EAB的中点时,求点E到面ACD1的距离;

(3)AE等于何值时,二面角D1ECD的大小为.                      

 

 

 

(理科做)(本题满分14分)

     如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =M为侧棱CC1上一点,AMBA1

   (Ⅰ)求证:AM⊥平面A1BC

   (Ⅱ)求二面角BAMC的大小;

   (Ⅲ)求点C到平面ABM的距离.

 

 

 

 

 

查看答案和解析>>

同步练习册答案