精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2m2
+y2
=1 (常数m>1),P是曲线C上的动点,M是曲线C上的右顶点,定点A的坐标为(2,0)
(1)若M与A重合,求曲线C的焦点坐标;
(2)若m=3,求|PA|的最大值与最小值;
(3)若|PA|的最小值为|MA|,求实数m的取值范围.
分析:(1)根据题意,若M与A重合,即椭圆的右顶点的坐标,可得参数a的值,已知b=1,进而可得答案;
(2)根据题意,可得椭圆的方程,变形可得y2=1-
x2
9
;而|PA|2=(x-2)2+y2,将y2=1-
x2
9
代入可得,|PA|2=
8x2
9
-4x+5,根据二次函数的性质,又由x的范围,分析可得,|PA|2的最大与最小值;进而可得答案;
(3)设动点P(x,y),类似与(2)的方法,化简可得|PA|2=
m2-1
m2
(x-
2m2
m2-1
2+
4m2
m2-1
+5,且-m≤x≤m;根据题意,|PA|的最小值为|MA|,即当x=m时,|PA|取得最小值,根据二次函数的性质,分析可得,
2m2
m2-1
≥m,且m>1;解可得答案.
解答:解:(1)根据题意,若M与A重合,即椭圆的右顶点的坐标为(2,0);
则a=2;椭圆的焦点在x轴上;
则c=
3

则椭圆焦点的坐标为(
3
,0),(-
3
,0);
(2)若m=3,则椭圆的方程为
x2
9
+y2=1;
变形可得y2=1-
x2
9

|PA|2=(x-2)2+y2=x2-4x+4+y2=
8x2
9
-4x+5;
又由-3≤x≤3,
根据二次函数的性质,分析可得,
x=-3时,|PA|2=
8x2
9
-4x+5取得最大值,且最大值为25;
x=
9
4
时,|PA|2=
8x2
9
-4x+5取得最小值,且最小值为
1
2

则|PA|的最大值为5,|PA|最小值为
2
2

(3)设动点P(x,y),
则|PA|2=(x-2)2+y2=x2-4x+4+y2=
m2-1
m2
(x-
2m2
m2-1
2+
4m2
m2-1
+5,且-m≤x≤m;
当x=m时,|PA|取得最小值,且
m2-1
m2
>0,
2m2
m2-1
≥m,且m>1;
解得1<m≤1+
2
点评:本题考查椭圆的基本性质,解题时要结合二次函数的性质进行分析,注意换元法的运用即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
m2
+
y2
n2
=1(0<m<n)
的离心率为
3
2
,且经过点P(
3
2
,1)

(1)求椭圆C的方程;
(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,kOD为直线OD的斜率,求证:k•kOD为定值;
(3)在(2)条件下,当t=1时,若
OA
OB
的夹角为锐角,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C 1
x2
a2
+
y2
b2
=λ1
(a>b>0,λ1>0)和双曲线C 2
x2
m2
-
y2
n2
=λ2(λ2≠0)
,给出下列命题:
①对于任意的正实数λ1,曲线C1都有相同的焦点;
②对于任意的正实数λ1,曲线C1都有相同的离心率;
③对于任意的非零实数λ2,曲线C2都有相同的渐近线;
④对于任意的非零实数λ2,曲线C2都有相同的离心率.
其中正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
m2
+y2=1
的左、右焦点分别为F1、F2,离心率为
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=x+t(t>0)与椭圆C交于A,B两点.若原点O在以线段AB为直径的圆内,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知椭圆C:
x2
m2
+y2=1
(常数m>1),P是曲线C上的动点,M是曲线C上的右顶点,定点A的坐标为(2,0)
(1)若M与A重合,求曲线C的焦点坐标;
(2)若m=3,求|PA|的最大值与最小值;
(3)若|PA|的最小值为|MA|,求实数m 的取值范围.

查看答案和解析>>

同步练习册答案