精英家教网 > 高中数学 > 题目详情

袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球,然后放回.若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.
(Ⅰ)求摸球3次就停止的事件发生的概率;
(Ⅱ)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望.

解:(Ⅰ)依题意,摸球1次,是红球的概率为,是白球的概率为
摸球3次就停止,说明前3次分别都摸到了红球,则所求事件的概率为 P==
(Ⅱ) ξ 可能的取值为0,1,2,3.则 P(ξ=0 )==,P( ξ=1)==
P(ξ=2)==
P(ξ=3)=++=
∴随机变量ξ的分布列是
ξ的数学期望为 Eξ=0×+1×+2×+3×=
分析:(Ⅰ) 摸球3次就停止,说明前3次分别都摸到了红球,则所求事件的概率为 P=
(Ⅱ) ξ 可能的取值为0,1,2,3,求出随机变量ξ取每个值的概率,即得分布列,从而求得期望.
点评:本题考查独立事件的概率,离散型随机变量的分布列,求出随机变量ξ取每个值的概率是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•吉安二模)甲袋中装有若干质地、大小相同的黑球、白球,乙袋中装有若干个质地、大小相同的黑球、红球.某人有放回地从两袋中每次取一球,甲袋中每取到一黑球得2分,乙袋中每取到一黑球得1分,取得其它球得零分,规定他最多取3次,如果前两次得分之和超过2分即停止取球,否则取第三次,取球方式:先在甲袋中取一球,以后均在乙袋中取球,此人在乙袋中取到一个黑球的概率为0.8,用ξ表示他取球结束后的总分,已知P(ξ=1)=0.24
(1)求随机变量ξ的数学期望;
(2)试比较此人选择每次都在乙袋中取球得分超过1分与选择上述方式取球得分超过1 分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲袋中装有若干质地、大小相同的黑球、白球,乙袋中装有若干个质地、大小相同的黑球、红球.某人有放回地从两袋中每次取一球,甲袋中每取到一黑球得2分,乙袋中每取到一黑球得1分,取得其它球得零分,规定他最多取3次,如果前两次得分之和超过2分即停止取球,否则取第三次,取球方式:先在甲袋中取一球,以后均在乙袋中取球,此人在乙袋中取到一个黑球的概率为0.8,用ξ表示他取球结束后的总分,已知P(ξ=1)=0.24
(1)求随机变量ξ的数学期望;
(2)试比较此人选择每次都在乙袋中取球得分超过1分与选择上述方式取球得分超过1 分的概率的大小.

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷D(十)(解析版) 题型:解答题

甲袋中装有若干质地、大小相同的黑球、白球,乙袋中装有若干个质地、大小相同的黑球、红球.某人有放回地从两袋中每次取一球,甲袋中每取到一黑球得2分,乙袋中每取到一黑球得1分,取得其它球得零分,规定他最多取3次,如果前两次得分之和超过2分即停止取球,否则取第三次,取球方式:先在甲袋中取一球,以后均在乙袋中取球,此人在乙袋中取到一个黑球的概率为0.8,用ξ表示他取球结束后的总分,已知P(ξ=1)=0.24
(1)求随机变量ξ的数学期望;
(2)试比较此人选择每次都在乙袋中取球得分超过1分与选择上述方式取球得分超过1 分的概率的大小.

查看答案和解析>>

科目:高中数学 来源:2010年江西省吉安市高考数学二模试卷(理科)(解析版) 题型:解答题

甲袋中装有若干质地、大小相同的黑球、白球,乙袋中装有若干个质地、大小相同的黑球、红球.某人有放回地从两袋中每次取一球,甲袋中每取到一黑球得2分,乙袋中每取到一黑球得1分,取得其它球得零分,规定他最多取3次,如果前两次得分之和超过2分即停止取球,否则取第三次,取球方式:先在甲袋中取一球,以后均在乙袋中取球,此人在乙袋中取到一个黑球的概率为0.8,用ξ表示他取球结束后的总分,已知P(ξ=1)=0.24
(1)求随机变量ξ的数学期望;
(2)试比较此人选择每次都在乙袋中取球得分超过1分与选择上述方式取球得分超过1 分的概率的大小.

查看答案和解析>>

同步练习册答案