精英家教网 > 高中数学 > 题目详情

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

解:(Ⅰ)设 当的斜率为1时,其方程为的距离为

    

   故    

       由

       得 =

(Ⅱ)C上存在点,使得当转到某一位置时,有成立。

由 (Ⅰ)知C的方程为+=6. 设

 (ⅰ)

 C 成立的充要条件是, 且

整理得

故                   ①

 21世纪教育网   

于是 , =,

     

  

     代入①解得,,此时

     于是=, 即    

     因此, 当时,

 当时,

(ⅱ)当垂直于轴时,由知,C上不存在点P使成立。

综上,C上存在点使成立,此时的方程为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009全国卷Ⅰ文)(本小题满分12分)(注意:在试题卷上作答无效)

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。

(Ⅰ)求再赛2局结束这次比赛的概率;

(Ⅱ)求甲获得这次比赛胜利的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009全国卷Ⅱ文)已知△ABC中,,则

A.            B.            C.       D.

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009全国卷Ⅱ文)(本小题满分12分).   

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1

(Ⅰ)证明:AB=AC    

(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009全国卷Ⅰ文)已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线所成的角的余弦值为

(A)       (B)       (C)         (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009全国卷Ⅱ文) 已知正四棱柱中,=重点,则异面直线所形成角的余弦值为

(A)          (B)             (C)      (D)      

查看答案和解析>>

同步练习册答案