精英家教网 > 高中数学 > 题目详情

如图,平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两两夹角为60°.

(1)求AC1的长;

(2)求BD1与AC夹角的余弦值.

=a,=b,=c,则|a|=|b|=|c|=1,

〈a,b〉=〈b,c〉=〈c,a〉=60°,

∴a·b=b·c=c·a=.

(1)| |2=(a+b+c)2

=a2+b2+c2+2a·b+2b·c+2a·c

=1+1+1+2×()=6.

∴AC1=||=.

(2)=b+c-a,=a+b.

∴||=,||=.

·=(b+c-a)·(a+b)

=b2-a2+a·c+b·c=1.

∴cos〈〉=.

∴AC与BD1夹角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平行六面体ANCD-EFGH中,棱AB,AD,AE的长分别为3,4,5,∠EAD=∠EAB=∠DAB=120°,则AG的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行六面体ABCD-A1B1C1D1中,AB=2,AD=1,底面ABCD是矩形,顶点D1在底面ABCD上的射影O恰好是CD的中点.
(I)求证:BO⊥AD1
(II)若二面角D1-AB-D的大小为60°,求AD1与底面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行六面体ABCD-A1B1C1D1中,∠BAD=∠BAA1=∠DAA1=60°,
(1)当AA1=3,AB=2,AD=2,求AC1的长;
(2)当底面ABCD是菱形时,求证:CC1⊥BD.

查看答案和解析>>

科目:高中数学 来源:2013届湖北省武汉市高二下期末理科数学试卷(解析版) 题型:解答题

题满分12分)

.如图,平行六面体ABCDA1B1C1D1中,∠BAD=∠BAA1=∠DAA1=60°,

(1)当AA1=3,AB=2,AD=2,求AC1的长;

(2)当底面ABCD是菱形时,求证:

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市萧山区三校联考高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图,平行六面体ANCD-EFGH中,棱AB,AD,AE的长分别为3,4,5,∠EAD=∠EAB=∠DAB=120°,则AG的长为   

查看答案和解析>>

同步练习册答案