精英家教网 > 高中数学 > 题目详情
11.据统计,2015年“双11”天猫总成交金额突破912亿元.某购物网站为优化营销策略,对在11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数5101547x
男性消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数2310y2
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’”与性别有关?”
女士男士总计
网购达人50      5   55    
非网购达人301545
总计8020100
附:
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (Ⅰ)根据分层抽样方法求出x、y的值,利用列举法计算基本事件数,求出对应的概率;
(Ⅱ)列出2×2列联表,计算观测值K2,对照表中数据,判断结论是否成立即可.

解答 解:(Ⅰ)依题意,女性应抽取80名,男性应抽取20名   …(1分)
∴x=80-(5+10+15+47)=3…(2分)
y=20-(2+3+10+2)=3…(3分)
抽出的100名且消费金额在[800,1000](单位:元)的网购者中有三位女性设为A,B,C;两位男性设为a,b,从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)共10件…(4分)
设“选出的两名网购者恰好是一男一女”为事件A
事件A包含的基本事件有:(A,a),(A,b),(B,a),(B,b),(C,a),(C,b)共6件…(5分)∴$P(A)=\frac{6}{10}=\frac{3}{5}$…(6分)
(Ⅱ)2×2列联表如下表所示

女性男性总计
网购达人50555
非网购达人301545
总计8020100
…(8分)
则${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{{100{{(50×15-30×5)}^2}}}{80×20×55×45}$…(9分)≈9.091…(10分)
∵9.091>6.635且P(k2≥6.635)=0.010…(11分)
答:在犯错误的概率不超过0.010的前提下可以认为“是否为‘网购达人’”与性别有关…(12分)

点评 本题考查了分层抽样方法的应用问题,也考查了2×2列联表的应用问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.关于x的不等式x2-4x+5<a2-2a-2的解集不是空集,则实数a的取值范围是(  )
A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-1,3)D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.偶函数f(x)满足:f(x+2)=f(x)对一切实数x成立,且当x∈(-2013,-2012)时,f(x)=cos $\frac{π}{2}$x,f(-2012)=a,f(-2013)=b,(a<b).
(1)若△ABC是钝角三角形,C是钝角,证明:f(sinA)>f(cosB);
(2)若f(x)的值域是[a,b],求a,b的值,并求方程f(x)=b的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足(1-i)z=i,则复数z的模为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,函数图象过点P(0,1),则函数f(x)=sin(ωx+φ)(  )
A.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减B.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增
C.在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递减D.在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x2-2x=0},B={x|x2+2x=0},则A∪B=(  )
A.{0}B.{0,2}C.{0,-2}D.{2,0,-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列结论①(sinx)′=-cosx;②$(\frac{1}{x})'=\frac{1}{x^2}$;③$({log_3}x)'=\frac{1}{3lnx}$;④$({x^2})'=\frac{1}{x}$.其中正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示
(1)求f(x)的解析式;
(2)求满足条件f(x)≥0时,x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)计算:${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+2lg({\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}})$
(2)已知简单组合体如图,试画出它的三视图(尺寸不做严格要求)

查看答案和解析>>

同步练习册答案