精英家教网 > 高中数学 > 题目详情

已知函数f (x)=x3(1-a)x2-3ax+1,a>0.

(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;

(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.

 

【答案】

(Ⅰ)先利用导数求出单调区间,再分情况证明;

(Ⅱ)

【解析】

试题分析:

(Ⅰ) 由于f ′(x)=3x2+3(1-a)x-3a=3(x+1)(x-a),且a>0,

故f (x)在[0,a]上单调递减,在[a,+∞)上单调递增.

又f (0)=1,f (a)=-a3a2+1=(1-a)(a+2) 2-1.

当f (a)≥-1时,取p=a.

此时,当x∈[0,p]时有-1≤f (x)≤1成立.

当f (a)<-1时,由于f (0)+1=2>0,f (a)+1<0,

故存在p∈(0,a)使得f (p)+1=0.

此时,当x∈[0,p]时有-1≤f (x)≤1成立.

综上,对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1.             7分

(Ⅱ) 由(Ⅰ)知f (x)在[0,+∞)上的最小值为f (a).

当0<a≤1时,f (a)≥-1,则g(a)是方程f (p)=1满足p>a的实根,

即2p2+3(1-a)p-6a=0满足p>a的实根,所以

g(a)=

又g(a)在(0,1]上单调递增,故g(a)max=g(1)=

当a>1时,f (a)<-1.

由于f (0)=1,f (1)=(1-a)-1<-1,故[0,p]Ì [0,1].

此时,g(a)≤1.

综上所述,g(a)的最大值为.                                               15分

考点:本题主要考查利用导数研究函数的性质等基础知识,同时考查推理论证能力,分类讨论等综合解题能力和创新意识。

点评:研究函数的性质往往离不开导数,导数是研究函数性质的有力工具,要灵活运用;另外,函数如果含参数,一般离不开分类讨论,分类讨论时要做到不重不漏.

 

练习册系列答案
相关习题

科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题

(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题

已知函数f(x)=4x2mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高三第三次月考文科数学卷 题型:选择题

已知函数f(x)=若f(a)=,则a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题

  已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:

    (1)方程f [f (x)]=x一定无实根;

    (2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;

    (3)若a<0,则必存在实数x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;

    正确的序号有          .              

 

查看答案和解析>>

科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题

已知函数f(x)=|lg(x-1)|-()x有两个零点x1x2,则有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步练习册答案