精英家教网 > 高中数学 > 题目详情

已知a∈(0,2),当a为何值时,直线l1:ax-2y=2a-4与l2:2x+a2y=2a2+4及坐标轴围成的平面区域的面积最小?

解:直线l1交y轴于A(0,2-a),直线l2交x轴于C(a2+2,0),
l1与l2交于点B(2,2).
则四边形AOCB的面积为S=S△AOB+S△OCB=•(2-a)•2+(a2+2)•2=a2-a+4=(a-2+
当a=时,S最小.
因此使四边形面积最小时a的值为
分析:求出四边形的A、B、C的顶点坐标,再运用面积公式合理求解.
点评:本题考查两直线的交点坐标的求法和四边形面积的求法,解题时要认真审题,仔细解答,注意配方法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知A(0,2)与抛物线C:y2=3x,若过点A的直线l与抛物线C有且只有一个公共点,则满足条件的直线l有
3
条.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,已知A(0,2),B(-2,0),C(1,0),P(0,p)(0<p<2),直线BP与AC交于点E,直线CP与AB交于点F,若OE⊥OF,则实数p的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B是非空集合,定义A?B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤2},B={y|y≥0},则A?B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B是非空集合,定义A×B={x|x∈(A∪B)且x∉(A∩B)}.已知A={x|0≤x≤2},B={y|y≥0},则A×B=
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面斜坐标系xOy中,∠xOy=135°.斜坐标定义:如果
OP
=xe1+xe2,(其中e1,e2分别是x轴,y轴的单位向量),则(x,y)叫做P的斜坐标.
(1)已知P的斜坐标为(1,
2
),则|
OP
|=
 

(2)在此坐标系内,已知A(0,2),B(2,0),动点P满足|
AP
|=|
BP
|,则P的轨迹方程是
 

查看答案和解析>>

同步练习册答案