精英家教网 > 高中数学 > 题目详情
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的最小正周期;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(x)≤f(
A
2
)
对所有的x∈R恒成立,且a=2,求b+c的取值范围.
(1)∵
m
n
=0
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),
∴(2cosx+2
3
sinx)cosx-y=0
即f(x)=(2cosx+2
3
sinx)cosx
=2cos2x+2
3
sinxcosx
=1+cos2x+
3
sin2x
=1+2sin(2x+
π
6

T=
2

∴f(x)的最小正周期为π.
(2)∵f(x)≤f(
A
2
)
对所有的x∈R恒成立
∴1+2sin(2x+
π
6
)≤1+2sin(A+
π
6
)对所有的x∈R恒成立
即sin(2x+
π
6
)≤sin(A+
π
6
)对所有的x∈R恒成立,而A是三角形中的角
∴A=
π
3

∴cosA=cos
π
3
=
b2+c2-4
2bc
即b2+c2=4+bc即(b+c)2=4+3bc≤4+3(
b+c
2
)
2

∴(b+c)2≤16即b+c≤4
而b+c>a=2
∴2<b+c≤4即b+c的取值范围为(2,4]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
n
=(2cosx,
3
sinx),
m
=(cosx,2cosx)
,设f(x)=
n
m
+a

(1)若x∈[0,
π
2
]
且a=l时,求f(x)的最大值和最小值,以及取得最大值和最小值时x的值;
(2)若x∈[0,π]且a=-1时,方程f(x)=b有两个不相等的实数根x1、x2,求b的取值范围及x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,2sinx),
n
=(cosx,
3
cosx),设f(x)=
m
n
-1.
(I)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(
C
2
)=2
,且acosB=bcosA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求f(x)的最小正周期和单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1△ABC的面积为
3
2
,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)已
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的最小正周期;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(x)≤f(
A
2
)
对所有的x∈R恒成立,且a=2,求b+c的取值范围.

查看答案和解析>>

同步练习册答案