数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
已知复数z=i,ω=i.复数z,z2ω3在复数平面上所对应的点分别是P、Q.证明:△OPQ是等腰直角三角形(其中O为原点).
证明:证法一:
ω=
于是zω=cos+isin, =cos(-)+isin(-).
z2ω3=[cos(-)+isin(-)]×(cosπ+isinπ)=cosπ+isinπ
因为OP与OQ的夹角为π-(-)=.
所以OP⊥OQ
又因为|OP|=||=1,|OQ|=|z2ω3|=|z|2|ω|3=1
∴|OP|=|OQ|.
由此知△OPQ为等腰直角三角形.
证法二:∵z=cos(-)+isin(-).
∴z3=-i
又ω=.
∴ω4=-1
于是
由此得OP⊥OQ,|OP|=|OQ|
故△OPQ为等腰直角三角形.
科目:高中数学 来源: 题型:
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区