【题目】我国有一道古典数学名著——两鼠穿墙:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”题意是:“有两只老鼠从墙的两边打洞穿墙(连线与墙面垂直),大老鼠第一天进一尺,以后每天加倍,小老鼠第一天也进一尺,以后每天减半,那么两鼠第几天能见面.”假设墙厚16尺,如图是源于该题思想的一个程序框图,则输出的( )
A. 3 B. 4 C. 5 D. 6
科目:高中数学 来源: 题型:
【题目】在100x25的长方形表格中每一格填入一个非负实数,第行第列中填入的数为(如表 1)。然后将表1每列中的数按由大到小的次序从上到下重新排列为,。(如表2)求最小的自然数k,使得只要表1中填入的数满足则当i≥k时,在表2中就能保证成立。
表1 表2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点的直线与直线垂直.
(1) 若,且点在函数的图象上,求直线的一般式方程;
(2)若点在直线上,判断直线是否经过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与原点为圆心的圆相交所得弦长为.
(1)若直线与圆切于第一象限,且直线与坐标轴交于点,当面积最小时,求直线的方程;
(2)设是圆上任意两点,点关于轴的对称点为,若直线分别交于轴与点和,问是否为定值?若是,请求处该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①,不等式恒成立;
②若,则;
③“若且,则”的逆否命题;
④若命题,命题,则命题是真命题.
其中,真命题为( )
A.①③④B.①②C.①②③D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆 (a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
(I)求椭圆的方程;
(II)设直线l: 与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 (O为原点) ,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.
写出关于的函数关系式;
应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com