精英家教网 > 高中数学 > 题目详情

【题目】我国有一道古典数学名著——两鼠穿墙:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”题意是:“有两只老鼠从墙的两边打洞穿墙(连线与墙面垂直),大老鼠第一天进一尺,以后每天加倍,小老鼠第一天也进一尺,以后每天减半,那么两鼠第几天能见面.”假设墙厚16尺,如图是源于该题思想的一个程序框图,则输出的( )

A. 3 B. 4 C. 5 D. 6

【答案】B

【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

程序执行第一次后,,执行第二次后,,执行第3次后, ,执行第4次后,,跳出循环,输出,程序结束,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】100x25的长方形表格中每一格填入一个非负实数,第行第列中填入的数为(如表 1)。然后将表1每列中的数按由大到小的次序从上到下重新排列为,。(如表2)求最小的自然数k,使得只要表1中填入的数满足则当i≥k时,在表2中就能保证成立。

1 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的直线与直线垂直.

1 ,且点在函数的图象上,求直线的一般式方程;

2)若点在直线上,判断直线是否经过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与原点为圆心的圆相交所得弦长为.

(1)若直线与圆切于第一象限,且直线与坐标轴交于点,当面积最小时,求直线的方程;

(2)设是圆上任意两点,点关于轴的对称点为,若直线分别交于轴与点,问是否为定值?若是,请求处该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

,不等式恒成立;

②若,则

,则的逆否命题;

④若命题,命题,则命题是真命题.

其中,真命题为(

A.①③④B.①②C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.

写出关于的函数关系式;

应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,则下列结论错误的是( )

A. 是偶函数 B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

同步练习册答案