精英家教网 > 高中数学 > 题目详情

已知双曲线数学公式的两个焦点分别为F1、F2,点P为双曲线上一点,且∠F1PF2=90°,则△F1PF2的面积等于


  1. A.
    数学公式
  2. B.
    1
  3. C.
    3
  4. D.
    6
C
分析:先根据双曲线方程得到a=1;b=;c=2;再根据双曲线定义得到|m-n|=2a=2,结合∠F1PF2=90°可得m2+n2=(2c)2=16,求出|PF1|与|PF2|的长,即可得到结论,
解答:由?a=1;b=;c=2.
因为P在双曲线上,设|PF1|=m;|PF2|=n,
则|m-n|=2a=2…(1)
由∠F1PF2=90°?m2+n2=(2c)2=16…(2)
则(1)2-(2)得:-2mn=-12?mn=6
所以,直角△F1PF2的面积:S==3.
故选C.
点评:本题主要考查双曲线的基本性质.在涉及到与焦点有关的题目时,一般都用定义求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)、F2
5
,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点是椭圆
x2
100
+
y2
64
=1
的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为椭圆
x2
16
+
y2
7
=1
的长轴的端点,其准线过椭圆的焦点,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)
F2(
5
,0)
,P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点F1(-
10
,0),F2
10
,0),M是此双曲线上的一点,|
MF1
|-|
MF2
|=6,则双曲线的方程为
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步练习册答案