精英家教网 > 高中数学 > 题目详情
已知数列an满足a1=2,
an+1
2an
=1+
1
n

(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列{
an
n
}
的前n项和为Sn,试比较an-Sn与2的大小.
分析:(Ⅰ)由
an+1
2an
=1+
1
n
,得
an+1
n+1
=
2
an+1
n
,故
an
n
=(
2
)
n
由此能求出an
(Ⅱ)由Sn=1×21+2×22+3×23+…+n×2n,知2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,所以Sn=(n-1)×2n+1+2,由此能够推导出an-Sn>2.
解答:解:(Ⅰ)由
an+1
2an
=1+
1
n
,得
a
 
n+1
n+1
=
2
an
n

∴数列{
an
n
}
是以
2
为首项,
2
为公比的等比数列.
an
n
=(
2
)
n
得an=n2•2n(n∈N+)(5分)
(Ⅱ)由条件知:
Sn=1×21+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得-Sn=2+22+…+2n-n×2n+1=
2(1-2n)
1-2
-n×2n+1

整理得:Sn=(n-1)×2n+1+2,(9分)
∴an-Sn-2=n2×2n-(n-1)×2n+1-4=[(n-1)2+1]×2n-4,
∵n∈N+,∴n=1时,an-Sn-2<0,∴an-Sn<2
n≥2时,an-Sn>2,∴an-Sn>2.(12分)
点评:本题考查数列通项公式的求法和数列前n项和的求法,利用数列的性质比较比较an-Sn与2的大小,解题时要注意数列性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an满足a1=1,且4an+1-anan+1+2an=9(n∈N*
(1)求a1,a2,a3,a4的值;
(2)由(1)猜想an的通项公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=1,n≥2时,
an
an-1
=
2-3an
an-1+2

(1)求证:数列{
1
an
}
为等差数列;
(2)求{
3n
an
}
的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1+a2+…+an=n2(n∈N*).
(1)求数列an的通项公式;
(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使
1
ak
,  
1
ap
,  
1
ar
成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为an1,an2,an3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1+2a2+22a3+…+2n-1an=
n
2
(n∈N*).
(Ⅰ)求数列{an}的通项;
(Ⅱ)若bn=
n
an
求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案