精英家教网 > 高中数学 > 题目详情

数列{an}是单调递增数列,且an=2n-1-3an-1,n=1,2,….则首项a0的值等于________.


分析:通过递推关系式an=2n-1-3an-1,考查特征,分解2n-1为两部分,通过数列是单调递增数列,求出数列的通项公式,然后求出首项a0的值.
解答:数列{an}是单调递增数列,且an=2n-1-3an-1,n=1,2,….在an=2n-1-3an-1,中分解2n-1为两部分,,就是an=-3an-1,所以,n=1,2,….
数列满足单调递增数列,所以首项a0的值等于
故答案为
点评:本题是难度较大题目,由递推关系式求出数列的通项公式,是解题的难点,分解数列中的项是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足:a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知数列{an}满足:a1=,a2=,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年北京市东城区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知数列{an}满足:a1=,a2=,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

查看答案和解析>>

科目:高中数学 来源:高考数学最后冲刺必读题解析30讲(24)(解析版) 题型:解答题

已知数列{an}满足:a1=,a2=,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

查看答案和解析>>

同步练习册答案