精英家教网 > 高中数学 > 题目详情
已知x>0,y>0,且2x+8y-xy=0,求:
(1)xy的最小值;
(2)x+y的最小值.
分析:(1)利用基本不等式构建不等式即可得出;
(2)由2x+8y=xy,变形得
2
y
+
8
x
=1,利用“乘1法”和基本不等式即可得出.
解答:解:(1)∵x>0,y>0,2x+8y-xy=0,
∴xy=2x+8y≥2
16xy

xy
≥8,∴xy≥64.当且仅当x=4y=16时取等号.
故xy的最小值为64.
(2)由2x+8y=xy,得:
2
y
+
8
x
=1,
又x>0,y>0,
∴x+y=(x+y)•(
2
y
+
8
x
)
=10+
2x
y
+
8y
x
≥10+2
2x
y
8y
x
=18.当且仅当x=2y=12时取等号.
故x+y的最小值为18.
点评:熟练掌握“乘1法”和变形利用基本不等式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0,y>0且x+y=xy,则x+y的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2007宁夏,7)已知x0y0xaby成等差数列,xcdy成等比数列,则的最小值是

[  ]

A0

B1

C2

D4

查看答案和解析>>

科目:高中数学 来源:安徽省合肥八中2012届高三第三次段考数学理科试题 题型:013

已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是

[  ]
A.

0

B.

1

C.

2

D.

4

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一下学期第7周周练数学试卷(解析版) 题型:选择题

已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是(  ) A.0  B.1  C.2  D.4

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知集合M={(x,y)|x+y=1},映射f:M→N,在f作用下点(x,y)的象是(2x,2y),则集合N=


  1. A.
    {(x,y)|x+y=2,x>0,y>0}
  2. B.
    {(x,y)|xy=1,x>0,y>0}
  3. C.
    {(x,y)|xy=2,x<0,y<0}
  4. D.
    {(x,y)|xy=2,x>0,y>0}

查看答案和解析>>

同步练习册答案