精英家教网 > 高中数学 > 题目详情

在以坐标轴为对称轴的椭圆上,A为右顶点,F为右焦点,过F作MN∥y轴,交椭圆于M、N两点,若|MN|=3,椭圆的离心率是方程2x2-5x+2=0的根.

(1)求椭圆方程;

(2)若(1)中所求椭圆的长轴不变,当以OA为斜边的直角三角形的直角顶点P落在椭圆上时,求椭圆短半轴长b的取值范围.

答案:
解析:

  (1)由2x2-5x+2=0得e=,所以a=2c,b=c,又=1,所以c=1,a=2,b=,故所求椭圆方程为=1.

  (2)设满足条件的椭圆方程为=1,则A(2,0).设P(x1,y1),则·=-1,所以=x1(2-x1)>0,所以0<x1<2,又=1,所以b2+4x1(2-x1)=4b2,(x1-2)[(b2-4)x1+2b2]=0,所以x1,∴0<<2,解得0<b<


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为
4
5
3
2
5
3
,过P作长轴的垂线恰好过椭圆的右焦点,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以坐标轴为对称轴的椭圆上,O为坐标原点,A为右顶点,F为右焦点,过F作MN∥y轴,交椭圆于M,N两点,若|MN|=3,椭圆的离心率是方程2x2-5x+2=0的根.
(1)求椭圆的方程;
(2)若此椭圆的长轴不变,当以OA为斜边的直角三角形的直角顶点P落在椭圆上时,求椭圆短半轴长b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为4和2,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为
4
5
3
2
5
3
,过点P作长轴的垂线恰好过椭圆的一个焦点,则该椭圆的方程为
x2
5
+
y2
10
3
=1
y2
5
+
x2
10
3
=1
x2
5
+
y2
10
3
=1
y2
5
+
x2
10
3
=1

查看答案和解析>>

同步练习册答案