精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
3
ax3+
1
2
ax2-2ax+2a+1
的图象经过四个象限,则实数a的取值范围是(  )
A.a>-
3
16
B.-
6
5
<a<-
3
16
C.a>-
6
5
D.-
6
5
≤a≤-
3
16
f′(x)=ax2+ax-2a=a(x+2)(x-1)
令f′(x)=a(x+2)(x-1)=0得x=-2或x=1
x∈(-∞,-2)时f′(x)的符号与x∈(-2,1)时f′(x)的符号相反,x∈(-2,1)时f′(x)的符号与x∈(1,+∞)时f′(x)的符号相反
∴f(-2)=-
8
3
a+2a+4a+2a+1
=
16
3
a+1
和为极值,f(1)=
1
3
a+
1
2
a-2a+2a+1
=
5
6
a+1

∵图象经过四个象限
∴f(-2)•f(1)<0即(
16
3
a+1
)(
5
6
a+1
)<0
解得-
6
5
<a<-
3
16

故答案为B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
x
x2+2(a+2)x+3a
,(x≥1)
能用均值定理求最大值,则需要补充a的取值范围是
a≥
1
3
a≥
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.
(Ⅰ)若c=-a2,且|x1-x2|=2,求b的最大值;
(Ⅱ)设g(x)=f′(x)+x,若0<x1<x2
13a
,且x∈(0,x1),证明:x<g(x)<x1

查看答案和解析>>

科目:高中数学 来源:2010年大连市高二六月月考理科数学卷 题型:解答题

(本小题满分12分)

已知函数f(x)=x3+bx2+cx+d (b,c,d∈R且都为常数)的导函数f¢(x)=3x2+4x且f(1)=7,设F(x)=f(x)-ax2

(1)当a<2时,求F(x)的极小值;

(2)若对任意x∈[0,+∞)都有F(x)≥0成立,求a的取值范围;

(3)在(2)的条件下比较a2-13a+39与的大小.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=(m∈R,e=2.718 28…是自然对数的底数).

(1)求函数f(x)的极值;

(2)当x>0时,设f(x)的反函数为f-1(x),对0<p<q,试比较f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函数f(x)=x3+bx2+cx+d(b、c、d∈R且都为常数)的导函数为f′(x)=3x2+4x,且f(1)=7,设F(x)=f(x)-ax2(a∈R).

(1)当a<2时,求F(x)的极小值;

(2)若对任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范围并证明不等式a2-13a+39≥.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=(m∈R,e=2.718 28…是自然对数的底数).

(1)求函数f(x)的极值;

(2)当x>0时,设f(x)的反函数为f-1(x),对0<p<q,试比较f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函数f(x)=x3+bx2+cx+d(b、c、d∈R且都为常数)的导函数为f′(x)=3x2+4x,且f(1)=7,设F(x)=f(x)-ax2(a∈R).

(1)当a<2时,求F(x)的极小值;

(2)若对任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范围并证明不等式a2-13a+39≥.

查看答案和解析>>

同步练习册答案