精英家教网 > 高中数学 > 题目详情
精英家教网长方体ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1∥平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1-DBC1的体积.
分析:(Ⅰ)直接根据B1D1∥BD,以及B1D1在平面BC1D外,即可得到结论;
(Ⅱ)先根据条件得到BD⊥平面ACC1A1⇒A1O⊥BD;再通过求先线段的长度推出A1O⊥OC1,即可证明A1O⊥平面BC1D;
(Ⅲ)结合上面的结论,直接代入体积计算公式即可.
解答:精英家教网解:(Ⅰ) 证明:依题意:B1D1∥BD,且B1D1在平面BC1D外.(2分)
∴B1D1∥平面BC1D(3分)
(Ⅱ) 证明:连接OC1
∵BD⊥AC,AA1⊥BD
∴BD⊥平面ACC1A1(4分)
又∵O在AC上,∴A1O在平面ACC1A1
∴A1O⊥BD(5分)
∵AB=BC=2∴AC=A1C1=2
2

OA=
2

∴Rt△AA1O中,A1O=
AA12+OA2
=2
(6分)
同理:OC1=2
∵△A1OC1中,A1O2+OC12=A1C12
∴A1O⊥OC1(7分)
∴A1O⊥平面BC1D(8分)
(Ⅲ)解:∵A1O⊥平面BC1D
∴所求体积V=
1
3
A1O•
1
2
•BD•OC1
(10分)
=
1
3
•2•
1
2
•2
2
•2=
4
2
3
(12分)
点评:本题主要考查线面垂直与线面平行的证明以及三棱锥体积的计算.是对立体几何知识的综合考查,难度不大,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(1)求棱A1A的长;
(2)求点D到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 则三棱锥A1-ABC的体积为(  )
A、10B、20C、30D、35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCD-A1B1C1D1,它是由一个长方体ABCD-A'B'C'D'切割而成,这个长方体的高为b,底面是边长为a的正方形,其中顶点A1,B1,C1,D1均为原长方体上底面A'B'C'D'各边的中点.
(1)若多面体面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(2)若a=4,b=2,求该多面体的体积;
(3)当a,b满足什么条件时AD1⊥DB1,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(1)求证:A1E⊥平面ADE;
(2)求三棱锥A1-ADE的体积.

查看答案和解析>>

同步练习册答案