精英家教网 > 高中数学 > 题目详情
函数f(x)=2x,g(x)=x2,当x>0时,这两个函数图象的交点个数是(  )
分析:本题考查的知识点是指数函数的图象,要求函数f(x)=2x,g(x)=x2的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案.
解答:解:在同一坐标系下,画出函数f(x)=2x,g(x)=x2的图象如下图:

由图可知,当x>0时,两个函数图象共有2个交点A(2,4),B(4,16).
故选B.
点评:本题是基础题,考查函数图象的交点的个数,考查绘图能力,基本知识的掌握情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,则满足f(x)=4的x的值是(  )
A、2B、16
C、2或16D、-2或16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+3
3x
,数列{an}满足:a1=1,a n+1=f(
1
an
),
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn
(3)设bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn
k-2004
2
对一切n∈N*成立,求最小的正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1
2x+1
,对任意m∈[-3,3],不等式f(mx-1)+f(2x)<0恒成立,则实数x的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x+6, x∈[1,2]
x+7, x∈[-1,1]
,则f(x)的最大值、最小值为
10,6
10,6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+x-5,那么方程f(x)=0的解所在区间是(  )

查看答案和解析>>

同步练习册答案