精英家教网 > 高中数学 > 题目详情
17.已知△ABC是边长为3的等边三角形,点P是以A为圆心的单位圆上一动点,点Q满足$\overrightarrow{AQ}$=$\frac{2}{3}$$\overrightarrow{AP}$+$\frac{1}{3}$$\overrightarrow{AC}$,则|$\overrightarrow{BQ}$|的最小值是$\frac{3\sqrt{7}-2}{3}$.

分析 首先建立平面直角坐标系:以A为原点,平行于CB的直线为x轴,这样便可建立坐标系,然后便可根据条件确定出C,B点的坐标,并根据题意设P(cosθ,sinθ),从而得到$\overrightarrow{BQ}$的坐标,用θ表示|$\overrightarrow{BQ}$|即可.

解答 解:如图建立平面直角坐标系,设P(cosθ,sinθ),则A(0,0),B(-$\frac{3}{2}$,-$\frac{3\sqrt{3}}{2}$),C($\frac{3}{2}$,-$\frac{3\sqrt{3}}{2}$);
$\overrightarrow{AQ}$=$\frac{2}{3}$$\overrightarrow{AP}$+$\frac{1}{3}$$\overrightarrow{AC}$=$\frac{2}{3}(cosθ,sinθ)+\frac{1}{3}(\frac{3}{2},-\frac{3\sqrt{3}}{2})$=($\frac{2}{3}cosθ+\frac{1}{2},\frac{2}{3}sinθ-\frac{\sqrt{3}}{2}$).
$\overrightarrow{BQ}=\overrightarrow{BA}+\overrightarrow{AQ}$=($\frac{2}{3}cosθ+2,\frac{2}{3}sinθ+\sqrt{3}$)
则|$\overrightarrow{BQ}$|=$\sqrt{(\frac{2}{3}cosθ+2)^{2}+(\frac{2}{3}sinθ+\sqrt{3})^{2}}$=$\sqrt{\frac{67}{9}+\frac{4\sqrt{7}}{3}sin(θ+α)}≥\sqrt{\frac{67}{9}-\frac{4\sqrt{7}}{3}}$=$\sqrt{\frac{67-12\sqrt{7}}{9}}=\frac{3\sqrt{7}-2}{3}$.
∴故答案为:$\frac{3\sqrt{7}-2}{3}$

点评 本题考查了数量积运算性质、三角函数的性质,考查了推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知$A(\frac{1}{4},0)$,动点P到点A的距离比到直线x=-$\frac{5}{4}$的距离少 1;
(1)求点P的轨迹方程;
(2)已知M(4,0),是否存在定直线x=a,以PM为直径的圆与直线x=a的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(2,4,x)$,$\overrightarrow b=(2,y,2)$,若$\overrightarrow a∥\overrightarrow b$,则x+y=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=$\frac{2x+1}{2-x}$,若函数图象向右平移2个单位,再向上平移1个单位得到新的图形,求新的图形表示的函数解析式并写出他的对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知斜三棱柱ABC-A1B1C1,点M,N分别在AC1和BC上,且满足$\overrightarrow{AM}$=k$\overrightarrow{A{C}_{1}}$,$\overrightarrow{BN}$=k$\overrightarrow{BC}$(0≤k≤1).
①向量$\overrightarrow{MN}$是否与向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面?
②直线MN是否与平面ABB1A1平行?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正六边形ABCDEF中,点Q为CD边中点,则下列数量积最大的是(  )
A.$\overrightarrow{AB}•\overrightarrow{AQ}$B.$\overrightarrow{AC}•\overrightarrow{AQ}$C.$\overrightarrow{AD}•\overrightarrow{AQ}$D.$\overrightarrow{AE}•\overrightarrow{AQ}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,并且过点P(2,-1)
(1)求椭圆C的方程;
(2)设点Q在椭圆C上,且PQ与x轴平行,过p点作两条直线分别交椭圆C于两点A(x1,y1),B(x2,y2),若直线PQ平分∠APB,求证:直线AB的斜率是定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△OAB的直观图△O′A′B′(如图)O′A′=1,∠B′=30°,则△OAB的面积为(  )
A.$\sqrt{6}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+$\sqrt{3}$a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若a+b=6,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案