精英家教网 > 高中数学 > 题目详情
11.函数y=log2tan($\frac{π}{4}$-x)的定义域是(-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ),k∈Z.

分析 根据对数函数的真数大于0,列出不等式,求出解集即可.

解答 解:∵函数y=log2tan($\frac{π}{4}$-x),
∴tan($\frac{π}{4}$-x)>0,
∴tan(x-$\frac{π}{4}$)<0,
-$\frac{π}{2}$+kπ<x-$\frac{π}{4}$<kπ(k∈Z),
-$\frac{π}{4}$+kπ<x<kπ+$\frac{π}{4}$(k∈Z),
∴函数y=log2tan($\frac{π}{4}$-x)的定义域是(-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ),k∈Z.
故答案为:(-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ),k∈Z.

点评 本题考查了根据函数的解析式求定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=2lnx-ax在点(1,f(1))处的切线与直线x+6y=0垂直,则实数a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列判断正确的是(  )
A.若l⊥m,m⊥n,则l∥nB.若α⊥β,β⊥γ,则α∥γC.若α∥β,m⊥α,则m⊥βD.若m∥α,m∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是各项均为正数的数列,{bn}是等差数列,且a1=b1=1,a5-3b2=7.2a${\;}_{n}^{2}$+(2-an+1)an-an+1=0(n∈N*
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,n∈N*,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图程序运行后输出的结果是61.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若定义在R上的函数f(x)满足:当0≤x<2时,f(x)=2x-x2,当2k≤x<2k+2(k∈N+)时,f(x)=2f(x-2),则函数F(x)=lnx-f(x)在区间(0,16)内的零点个数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB,点F满足$\overrightarrow{AF}$=2$\overrightarrow{FE}$.
(1)求证:直线EC∥平面BDF;
(2)求二面角D-BF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在五面体ABCDEF中,四边形ABCD为菱形,且∠BAD=$\frac{π}{3}$,对角线AC与BD相交于O,OF⊥平面ABCD,BC=CE=DE=2EF=2.
(Ⅰ) 求证:EF∥BC;
(Ⅱ)求面AOF与平面BCEF所成锐二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设k∈R,函数f(x)=$\left\{\begin{array}{l}{\frac{1}{1-x},x<1}\\{-\sqrt{x-1},x≥1}\end{array}\right.$,F(x)=f(x)-kx,x∈R.
(1)当k=1时,求函数F(x)的单调区间;
(2)若函数F(x)在(-∞,-1]内是单调增函数,求k的取值范围.

查看答案和解析>>

同步练习册答案