精英家教网 > 高中数学 > 题目详情
(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为
1
10
和p.
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为
49
50
,求p的值;
(Ⅱ)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.
分析:(Ⅰ)求出“至少有一个系统不发生故障”的对立事件的概率,利用至少有一个系统不发生故障的概率为
49
50
,可求p的值;
(Ⅱ)利用相互独立事件的概率公式,即可求得结论.
解答:解:(Ⅰ)设“至少有一个系统不发生故障”为事件C,则1-P(
.
C
)=1-
1
10
×p=
49
50

p=
1
5

(Ⅱ)设“系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D,那么
P(D)=
C
2
3
×
1
10
×(1-
1
10
)
2
+(1-
1
10
)
3
=
243
250
点评:本题主要考查相互独立事件、独立重复试验、互斥事件的概念与计算,考查运用概率知识与方法解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为
1
10
和p.
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为
49
50
,求p的值;
(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012四川理)某居民小区有两个相互独立的安全防范系统(简称系统),系统在任意时刻发生故障的概率分别为.

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;

(Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望.

查看答案和解析>>

同步练习册答案