精英家教网 > 高中数学 > 题目详情

 

 

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

喜爱打篮球

不喜爱打篮球

合计

男生

20

5

25

女生

10

15

25

合计

30

20

50

 

(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?

(2)在上述抽取的6人中选2人,求恰有一名女生的概率.

(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

【答案】

 

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

喜爱打篮球

不喜爱打篮球

合计

男生

20

5

25

女生

10

15

25

合计

30

20

50

 

(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?

(2)在上述抽取的6人中选2人,求恰有一名女生的概率.

(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

解:(1)在喜欢打蓝球的学生中抽6人,则抽取比例为

∴男生应该抽取人………………………………….4分

(2)在上述抽取的6名学生中, 女生的有2人,男生4人。女生2人记;男生4人为, 则从6名学生任取2名的所有情况为:共15种情况,其中恰有1名女生情况有:

,共8种情况,

故上述抽取的6人中选2人,恰有一名女生的概率概率为. ………………….8分

(3)∵,且

那么,我们有的把握认为是否喜欢打蓝球是与性别有关系的……….12分

 

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 5
女生 10
合计 50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了以下2×2列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 20 5 25
女生 10 15 25
合计 30 20 50
下面的临界值表供参考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.027 2.706 3.841 5.042 6.635 7.879 10.828
综合公式x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得有
99.5
99.5
%的把握认为喜爱打篮球与性别有关.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 5
女生 10
合计 50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5

(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打羽毛球 不喜爱打羽毛球 合计
男生
20
20
5
25
25
女生 10
15
15
25
25
合计
合计
30
30
20
20
50
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率
2
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,A1,A2还喜欢打篮球,B1,B2还喜欢打乒乓球,C1,C2还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生B1和C1不全被选中的概率.下面的临界值表供参考:
P(Χ2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关一模)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 20 5 25
女生 10 15 25
合计 30 20 50
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2≈8.333,你有多大的把握认为是否喜欢打蓝球与性别有关?下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步练习册答案