精英家教网 > 高中数学 > 题目详情

如图1在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。

所求角为15,建筑物高度为15m。


解析:

(用正弦定理求解)由已知可得在

ACD中, AC=BC=30,

        AD=DC=10

   ADC =180-4

       = 。

      ∵sin4=2sin2cos2    cos2=,得   2=30=15

在RtADE中,AE=ADsin60=15,

答:所求角为15,建筑物高度为15m。

解法二:(设方程来求解)设DE= x,AE=h,

      在 RtACE中,(10+ x) + h=30

      在 RtADE中,x+h=(10)

       两式相减,得x=5,h=15,

在 RtACE中,tan2==

2=30,=15

 答:所求角为15,建筑物高度为15m

解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

BAC=,   CAD=2

AC = BC =30m , AD = CD =10m

在RtACE中,sin2=          

在RtADE中,sin4=,               

  ②① 得       cos2=,2=30,=15,AE=ADsin60=15

答:所求角为15,建筑物高度为15m

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,某学校田径场上有一旗杆OP,为了测量它的高度,在地面上选一基线AB,设其长度为d,在A点处测得P点的仰角为α,在B点处测得P点的仰角为β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗杆的高度h;
(2)经分析若干测得的数据后,发现将基线AB调整到线段AO上(如图2),α与β之差尽量大时,可以提高测量精确度,设调整后AB的距离为d,tanβ=
4d
,旗杆的实际高度为25,试问d为何值时,β-α最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

攀岩运动是一项刺激而危险的运动,如图(1)在某次攀岩活动中,两名运动员在如图所在位置,为确保运动员的安全,地面救援者应时刻注意两人离地面的距离,以备发生危险时进行及时救援.为了方便测量和计算,画出示意图,如图(2)所示,点A,C分别为两名攀岩者所在位置,点B为山的拐角处,且斜坡AB的坡角为θ,点D为山脚,某人在地面上的点E处测得A,B,C的仰角分别为α,β,γ,ED=a,求:
(Ⅰ)点B,D间的距离及点C,D间的距离;
(Ⅱ)在点A处攀岩者距地面的距离h.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,某学校田径场上有一旗杆OP,为了测量它的高度,在地面上选一基线AB,设其长度为d,在A点处测得P点的仰角为α,在B点处测得P点的仰角为β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗杆的高度h;
(2)经分析若干测得的数据后,发现将基线AB调整到线段AO上(如图2),α与β之差尽量大时,可以提高测量精确度,设调整后AB的距离为d,tanβ=数学公式,旗杆的实际高度为25,试问d为何值时,β-α最大?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省常德市芷兰实验学校高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

如图1,某学校田径场上有一旗杆OP,为了测量它的高度,在地面上选一基线AB,设其长度为d,在A点处测得P点的仰角为α,在B点处测得P点的仰角为β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗杆的高度h;
(2)经分析若干测得的数据后,发现将基线AB调整到线段AO上(如图2),α与β之差尽量大时,可以提高测量精确度,设调整后AB的距离为d,tanβ=,旗杆的实际高度为25,试问d为何值时,β-α最大?

查看答案和解析>>

同步练习册答案