精英家教网 > 高中数学 > 题目详情

A=,求AB

 

答案:
解析:

的两根为x2x2+3x+2α=0的两根为x3x4,则

x1x2AB=A=,且x3x4AB=AB=2}。

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).
(1)求证:数列{an+1-pan}为等比数列;
(2)数列{an}中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设A={(n,bn)|bn=3n+kn,n∈N*},其中k为常数,且k∈N*,B={(n,cn)|cn=5n,n∈N*},求A∩B.

查看答案和解析>>

科目:高中数学 来源:2005年湖北省武汉市高三二月调考高三数学试卷(解析版) 题型:解答题

设A、B、C三个事件相互独立,事件A发生的概率是,A、B、C中只有一个发生的概率是,又A、B、C中只有一个不发生的概率是
(1)求事件B发生的概率及事件C发生的概率;
(2)试求A、B、C均不发生的概率.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省宿迁市泗阳中学高考数学模拟试卷(三)(解析版) 题型:解答题

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).
(1)求证:数列{an+1-pan}为等比数列;
(2)数列{an}中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设A={(n,bn)|bn=3n+kn,n∈N*},其中k为常数,且k∈N*,B={(n,cn)|cn=5n,n∈N*},求A∩B.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市赣榆高级中学高三3月调研数学试卷(解析版) 题型:解答题

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).
(1)求证:数列{an+1-pan}为等比数列;
(2)数列{an}中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设A={(n,bn)|bn=3n+kn,n∈N*},其中k为常数,且k∈N*,B={(n,cn)|cn=5n,n∈N*},求A∩B.

查看答案和解析>>

科目:高中数学 来源:2010年高三数学二轮冲刺练习试卷(10)(解析版) 题型:解答题

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).
(1)求证:数列{an+1-pan}为等比数列;
(2)数列{an}中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设A={(n,bn)|bn=3n+kn,n∈N*},其中k为常数,且k∈N*,B={(n,cn)|cn=5n,n∈N*},求A∩B.

查看答案和解析>>

同步练习册答案