精英家教网 > 高中数学 > 题目详情
设数列{bn}满足b1=1,bn+1=2bn+1,若数列{an}满足:a1=1,且当n≥2,n∈N*时,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)

(I) 求b2,b3,b4及bn
(II)证明:
n
k=1
(1+
1
ak
)<
10
3
(n∈N*)
,(注:
n
k=1
(1+
1
ak
)=(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
).
分析:(I)由b1=1,bn+1=2bn+1,分别令n=1和n=2,先求出b2和b3,再由bn+1=2bn+1,利用构造法求出{bn}的通项公式.
(II)先证明
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*),由该结论得
n
k=1
(1+
1
ak
)=(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
)=2(
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
),再由
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
=1+
1
3
+…+
1
2n-1
,利用放缩法即可证明结论;
解答:(Ⅰ)解:∵b1=1,bn+1=2bn+1,
∴b2=2×1+1=3,b3=2×3+1=7,b4=2×7+1=15,
∵bn+1=2bn+1,∴bn+1+1=2(bn+1),
所以{bn+1}为公比为2的等比数列,首项为2,
∴bn+1=(b1+1)•2n-1=2•2n-1=2n
∴bn=2n-1.
(II)证明:a1=1,an=bn
1
b1
+
1
b2
+…+
1
bn-1
)(n≥2且n∈N*),
an
bn
=
1
b1
+
1
b2
+…+
1
bn-1
an+1
bn+1
=
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn

an+1
bn+1
-
an
bn
=
1
bn
,∴
an+1
bn+1
=
an+1
bn

an+1
an+1
=
bn
bn+1
(n≥2且n∈N*).
所以
n
k=1
(1+
1
ak
)=(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)

=
a1+1
a1
×
a2+1
a2
×
a3+1
a3
×
…×
an+1
an

=
a1+1
a1a2
×
a2+1
a3
×
a3+1
a4
×…×
an+1
an+1
an+1

=
2
3
×
b2
b3
×
b3
b4
×…×
bn
bn+1
•an+1
=
2
3
×
b2
bn+1
•an+1=2•
an+1
bn+1

=2(
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
),
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
=1+
1
3
+…+
1
2n-1

当k≥2时,
1
2k-1
=
2k-1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
=2(
1
2k-1
-
1
2k+1-1
),
∴1+
1
3
+…+
1
2n-1

=1+2[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)+…+(
1
2n-1
-
1
2n+1-1

=1+2(
1
3
-
1
2n+1-1
)<
5
3
10
3
点评:本题考查数列的通项公式的求法,考查不等式的证明,考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的首项为a,公差为b,且不等式ax2-3x+2>0的解集为(-∞,1)∪(b,+∞)
(1)求数列{an}的通项公式
(2)设数列{bn}满足bn=
1anan+1
求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌一模)等差数列{an}的各项均为正数,a1=1且a3,a6,a10+2成等比数列.
(Ⅰ)求数列{an}的前20项和S20
(Ⅱ)设数列{bn}满足b1=1,bn+1=bn+2an,求证bn•bn+2<b
 
2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省豫南九校高三(上)第二次联考数学试卷(文科)(解析版) 题型:解答题

已知等差数列{an}的首项为a,公差为b,且不等式ax2-3x+2>0的解集为(-∞,1)∪(b,+∞)
(1)求数列{an}的通项公式
(2)设数列{bn}满足求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012年上海市嘉定区高考数学一模试卷(理科)(解析版) 题型:解答题

定义x1,x2,…,xn的“倒平均数”为(n∈N*).已知数列{an}前n项的“倒平均数”为,记cn=(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求Tn

查看答案和解析>>

同步练习册答案