精英家教网 > 高中数学 > 题目详情
4.试判断函数f(x)=$\frac{1}{x}$在区间(-∞,0)上的单调性并证明你的结论.

分析 函数f(x)=$\frac{1}{x}$在区间(-∞,0)上的单调递减.利用单调性的证明方法即可得出.

解答 解:函数f(x)=$\frac{1}{x}$在区间(-∞,0)上的单调递减.证明如下:
?x1<x2<0,
则f(x1)-f(x2)=$\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}$=$\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}$.
∵x1<x2<0,∴x2-x1>0,x1x2>0.
∴f(x1)-f(x2)>0.
∴f(x1)>f(x2).
∴函数f(x)=$\frac{1}{x}$在区间(-∞,0)上的单调递减.

点评 本题考查了单调性的证明方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.给出如下一个算法:
第一步:输入x;
第二步:若x>0,则y=2x2-1,否则执行第三步;
第三步:若x=0,则y=1,否则y=2|x|;
第四步:输出y.
(1)画出该算法的程序框图;
(2)若输出y的值为1,求输入实数x的所有可能的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与x轴、y轴正半轴分别交于点A、B,点C是椭圆上位于第一象限的点,则四边形OACB面积的最大值为$\frac{15\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2+bx+c-2,若关于x的不等式-2≤f(x)≤2的解集为[x1,x2]∪[x3,x4](x2<x3),则W=(2x4-x3)-(2x1-x2)的最小值为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}中,a5=3,公差d=-2,求通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.用斜二侧画法画一个周长为4的矩形的直观图,试求直观图面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow{a}$,$\overrightarrow{b}$是平面内互不相等的两个非零向量,且|$\overrightarrow{a}$|=1,$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为150°,则|$\overrightarrow{b}$|的取值范围是(  )
A.(0,$\sqrt{3}$]B.[1,$\sqrt{3}$]C.(0,2]D.[$\sqrt{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四面体ABCD中,截面EFGH平行于对于棱AB和CD,试问截面在什么位置时其截面面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,P-ABCD是一个各棱长都为2cm的正四棱锥,求这个棱锥的表面积和体积.

查看答案和解析>>

同步练习册答案