精英家教网 > 高中数学 > 题目详情
数集M={x|-3<x≤5},N={x|a+1≤x<4a+1},若N⊆M,则实数a的取值范围是(  )
分析:利用条件N⊆M,建立a的不等式关系即可求解.
解答:解:若N=∅,即a+1≥4a+1,即a≤0时,满足N⊆M.
若N≠∅,即a+1<4a+1,即a>0时,
要使N⊆M,
则满足
a>0
a+1>-3
4a+1≤5
,即
a>0
a>-4
a≤1
,解得0<a≤1,
综上:a≤1.
故选:D
点评:本题主要考查集合关系的应用,考查分类讨论的思想,利用数轴是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•上海模拟)在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:填空题

在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=______(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市十校高三(下)联考数学试卷(理科)(解析版) 题型:解答题

在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取,可得:,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集没有最大数”,也可以用反证法证明.我们可以假设是B中的最大数,则可以找到x'=    (用m,n表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市十校高三(下)联考数学试卷(文科)(解析版) 题型:解答题

在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取,可得:,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集没有最大数”,也可以用反证法证明.我们可以假设是B中的最大数,则可以找到x'=    (用m,n表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

同步练习册答案