精英家教网 > 高中数学 > 题目详情

已知抛物线D的顶点是椭圆Q:的中心O,焦点与椭圆Q的右焦点重合,点是抛物线D上的两个动点,且

   (1)求抛物线D的方程及y1y2的值;

   (2)求线段AB中点轨迹E的方程;

   (3)在曲线E上寻找一点,使得该点与直线的距离最近.

 

【答案】

①y2=4x  

∴y1y2=-16

,

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线D的顶点是椭圆Q:
x2
4
+
y2
3
=1
的中心O,焦点与椭圆Q的右焦点重合,点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线D上的两个动点,且|
OA
+
OB
|=|
OA
-
OB
|
(Ⅰ)求抛物线D的方程及y1y2的值;
(Ⅱ)求线段AB中点轨迹E的方程;
(Ⅲ)求直线y=
1
2
x
与曲线E的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线D的顶点是椭圆
x2
4
+
y2
3
=1
的中心,焦点与该椭圆的右焦点重合.
(Ⅰ)求抛物线D的方程;
(Ⅱ)已知动直线l过点P(4,0),交抛物线D于A、B两点.(i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)已知抛物线D的顶点是椭圆
x2
4
+
y2
3
=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A、B两点,坐标原点O为PQ中点,求证:∠AQP=∠BQP;
(3)是否存在垂直于x轴的直线m被以AP为直径的圆所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线D的顶点是椭圆
x2
4
+
y2
3
=1
的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)已知直线l过点P(4,0)交抛物线于A,B两点,是否存在垂直于x轴的直线x=m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出直线x=m的方程;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案