椭圆
的长轴长为4,焦距为2,F1、F2分别为椭圆的左、右焦点,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点![]()
(1)求椭圆
的标准方程和动点
的轨迹
的方程。
(2)过椭圆
的右焦点
作斜率为1的直线交椭圆于A、B两点,求
的面积。
(3)设轨迹
与
轴交于点
,不同的两点
在轨迹
上,
满足
求证:直线
恒过
轴上的定点。
解:(1)由题设知:2a = 4,即a = 2,2c=2,即c=1,![]()
故椭圆方程为
, ………2分
∵MP=MF2,
∴动点M到定直线
的距离等于它到定点F1(1,0)的距离,
∴动点M的轨迹是C为l1准线,F2为焦点的抛物线
∴点M的轨迹C2的方程为
…………5分
(2)
消去
并整理得:
设
则
---------------7分
=
-----------9分
(3)Q(0,0),设
------------10分
![]()
---------------------------11分
![]()
![]()
![]()
![]()
----------------13 分
故直线RS恒过定点(4,0)-------------------------------------------------------14分
【解析】略
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010年湖北省高考数学模拟试卷(文理合卷)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com