已知函数:
,其中:
,记函数
满足条件:
为事件为
,则事件
发生的概率为( )
A.
B.
C.
D.![]()
B
【解析】
试题分析:我们可以以b,c为横纵坐标建立坐标系,并把0≤b≤4,0≤c≤4所表示的区域表示出来,并将
,代入函数f(x)=x2+bx+x转化为一个关于b、c的不等式,画出其表示的图形,计算面积后,代入几何概型公式,即可求解.
因为即4+2b+c≤12,4-2b+c≤4.以b,c为横纵坐标建立坐标系如图:
![]()
所以满足条件的概率为![]()
.故选B
考点:本题主要考查了几何概型概率的计算的运用,
点评:解决该试题的关键是几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
求解.
科目:高中数学 来源: 题型:
(1)求ω的取值范围;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=
,b+c=3(b>c),当ω最大时,f(A)=1,求边b,c的长.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省五校联盟高三下学期第一次联考文科数学试卷(解析版) 题型:解答题
已知
,函数
,
,(其中e是自然对数的底数,为常数),
(1)当
时,求
的单调区间与极值;
(2)是否存在实数
,使得
的最小值为3. 若存在,求出
的值,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学文卷 题型:解答题
(本小题满分14分)
已知函数
,
.(其中
为自然对数的底数),
(Ⅰ)设曲线
在
处的切线与直线
垂直,求
的值;
(Ⅱ)若对于任意实数
≥0,
恒成立,试确定实数
的取值范围;
(Ⅲ)当
时,是否存在实数
,使曲线C:
在点![]()
处的切线与
轴垂直?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年天津市高三十校联考理科数学 题型:解答题
.(14分)已知函数
,
,其中![]()
(Ⅰ)若
是函数
的极值点,求实数
的值
(Ⅱ)若对任意的
(
为自然对数的底数)都有
≥
成立,求实数
的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com