【题目】某品牌的汽车4S店,对最近100例分期付款购车情况进行统计,统计结果如表所示,已知分9期付款的频率为0.4;该店经销一辆该品牌的汽车.若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
频数 | 20 | 20 | a | b |
(1)若以表中计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3位顾客,求事件A:“至多有1位采用分6期付款”的概率P(A);
(2)按分层抽样的方式从这100位顾客中抽出5人,再从抽出的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列及数学期望E(η).
【答案】
(1)解:由 =0.4,得a=40,
∵20+a+20+b=100,∴b=20
记分期付款的期数为ξ,依题意得:
P(ξ=3)= =0.2,P(ξ=6)= =0.2,P(ξ=9)= =0.4,P(ξ=12)= =0.2.
则“购买该品牌汽车的3为顾客中至多有1位采用3期付款”的概率
P(A)= + =0.896
(2)解:按分层抽样的方式从这100位顾客中抽出5人,则顾客分3期付款与分6期付款的各为1人,分9期付款的为2人,分12期付款为1人.则η的可能取值为5,6,7.
P(η=5)=P(ξ=3)×P(ξ=6)×P(ξ=9)+P(ξ=3)×P(ξ=9)×P(ξ=9)= + = .
P(η=6)=P(ξ=3)×P(ξ=6)×P(ξ=12)+P(ξ=6)×P(ξ=9)×P(ξ=9)+P(ξ=3)×P(ξ=9)×P(ξ=12)= = ,
P(η=7)=P(ξ=6)×P(ξ=9)×P(ξ=12)+P(ξ=9)×P(ξ=9)×P(ξ=12)= = .
列表如下:
η | 5 | 6 | 7 |
P | 0.3 | 0.4 | 0.3 |
所以η的数学期望E(η)=5×0.3+6×0.4+7×0.3=6(万元)
【解析】(1)由 =0.4,得a=40,20+a+20+b=100,解得b.记分期付款的期数为ξ,依题意即可得出其概率.进而定点“购买该品牌汽车的3为顾客中至多有1位采用3期付款”的概率P(A).(2)按分层抽样的方式从这100位顾客中抽出5人,则顾客分3期付款与分6期付款的各为1人,分9期付款的为2人,分12期付款为1人.则η的可能取值为5,6,7.利用相互独立与互斥事件的概率计算公式可得其概率,进而得到分布列与数学期望.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
(1)求函数f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)单调增区间;
(3)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (I)求直方图中x的值;
(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;
(Ⅲ)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个顶点的坐标为A(0,1),B(1,0),C(0,﹣2),O为坐标原点,动点M满足| |=1,则| + + |的最大值是( )
A.
B.
C. ﹣1
D. ﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的最小值为m.
(1)求m的值;
(2)若a,b,c是正实数,且a+b+c=m,求证:2(a3+b3+c3)≥ab+bc+ca﹣3abc.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函数f(x)= ﹣1.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在锐角△ABC中,内角A、B、C的对边分别为a,b,c,tanB= ,对任意满足条件的A,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为 (t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的左、右焦点为F1 , F2 , 设点F1 , F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足 = + ,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com