精英家教网 > 高中数学 > 题目详情
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是(  )
分析:分别取棱BB1、B1C1的中点M、N,连接MN,易证平面A1MN∥平面AEF,由题意知点P必在线段MN上,由此可判断P在M或N处时A1P最长,位于线段MN中点处时最短,通过解直角三角形即可求得.
解答:解:如下图所示:
分别取棱BB1、B1C1的中点M、N,连接MN,连接BC1
∵M、N、E、F为所在棱的中点,∴MN∥BC1,EF∥BC1
∴MN∥EF,又MN?平面AEF,EF?平面AEF,
∴MN∥平面AEF;
∵AA1∥NE,AA1=NE,∴四边形AENA1为平行四边形,
∴A1N∥AE,又A1N?平面AEF,AE?平面AEF,
∴A1N∥平面AEF,
又A1N∩MN=N,∴平面A1MN∥平面AEF,
∵P是侧面BCC1B1内一点,且A1P∥平面AEF,
则P必在线段MN上,
在Rt△A1B1M中,A1M=
A1B12+B1M2
=
1+(
1
2
)2
=
5
2

同理,在Rt△A1B1N中,求得A1N=
5
2

∴△A1MN为等腰三角形,
当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M、N处时A1P最长,
A1O=
A1M2-OM2
=
(
5
2
)2-(
2
4
)2
=
3
2
4

A1M=A1N=
5
2

所以线段A1P长度的取值范围是[
3
2
4
5
2
].
故选B.
点评:本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一棱长为2的正四面体O-ABC的顶点O在平面α内,底面ABC平行于平面α,平面OBC与平面α的交线为l.
(1)当平面OBC绕l顺时针旋转与平面α第一次重合时,求平面OBC转过角的正弦
值.
(2)在上述旋转过程中,△OBC在平面α上的投影为等腰△OB1C1(如图1),B1C1的中点为O1.当AO⊥平面α时,问在线段OA上是否存在一点P,使O1P⊥OBC?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南京市金陵中学高三(上)8月月考数学试卷(解析版) 题型:解答题

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省合肥八中高考数学一模试卷(理科)(解析版) 题型:解答题

如图,一棱长为2的正四面体O-ABC的顶点O在平面α内,底面ABC平行于平面α,平面OBC与平面α的交线为l.
(1)当平面OBC绕l顺时针旋转与平面α第一次重合时,求平面OBC转过角的正弦
值.
(2)在上述旋转过程中,△OBC在平面α上的投影为等腰△OB1C1(如图1),B1C1的中点为O1.当AO⊥平面α时,问在线段OA上是否存在一点P,使O1P⊥OBC?请说明理由.

查看答案和解析>>

同步练习册答案