精英家教网 > 高中数学 > 题目详情
3.函数f(x)=1-ex的图象与x轴相交于点P,则曲线在点P处的切线的方程为(  )
A.y=-e•x+1B.y=-x+1C.y=-xD.y=-e•x

分析 求出函数f(x)与x轴的交点坐标,再求出原函数的导函数,得到函数在x=0处的导数,由直线方程的点斜式得答案.

解答 解:由f(x)=1-ex
可令f(x)=0,即ex=1,解得x=0
可得P(0,0),
又f′(x)=-ex
∴f′(0)=-e0=-1.
∴f(x)=1-ex在点P(0,0)处的切线方程为y-0=-1×(x-0),
即y=-x.
故选:C..

点评 本题考查利用导数研究曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知△ABC中,A:B:C=1:1:4,则a:b:c等于(  )
A.1:1:$\sqrt{3}$B.2:2:$\sqrt{3}$C.1:1:2D.1:1:4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)对任意的x,y∈R都有f(x+y)=f(x)+f(y),且f(2)=4,则f(1)=(  )
A.-2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,点P到两点$({0,\sqrt{3}}),({0,-\sqrt{3}})$的距离之和等于4,设点P的轨迹为C
(1)写出曲线C的标准方程
(2)设直线y=kx+1与曲线C交于A,B两点,求当k为何值时,能使∠AOB=90°?
(3)在(2)的条件下,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,F1,F2是椭圆${C_1}:\frac{x^2}{4}+{y^2}=1$与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则双曲线C2的渐近线方程是(  )
A.$y=±\sqrt{2}x$B.$y=±\frac{{\sqrt{2}}}{2}x$C.y=±$\sqrt{3}$xD.y=±$\frac{{\sqrt{6}}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数集R,集合A={x|1<x<3},集合B={x|y=$\frac{1}{\sqrt{x-2}}$},则A∩(∁RB)=(  )
A.{x|1<x≤2}B.{x|1<x<3}C.{x|2≤x<3}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-(4a+1)x-8a+4,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,若a=$\frac{1}{2}$,则函数f(x)的值域为R;若函数f(x)是R上的减函数,求实数a的取值范围为[$\frac{1}{4}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={1,2,3,4},B={x|x=2n,n∈A },则A∩B=(  )
A.{ 1,4}B.{ 2,4}C.{ 9,16}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)的导数为f'(x),且f(x)=ex+2x•f'(1),则f'(0)=1-2e.

查看答案和解析>>

同步练习册答案