精英家教网 > 高中数学 > 题目详情
在实数的原有运算法则中,我们补充定义新运算“⊕”:当 a≥b时,a⊕b=a;当a<b时,a⊕b=b2,函数f(x)=(1⊕x)•x(其中“•”仍为通常的乘法),则函数f(x)在[0,2]上的值域为(  )
分析:先求出函数的解析式,当x∈[0,1]时,求得f(x)的范围,当x∈(1,2]时,求得f(x)的范围,再把f(x)的范围取并集,即得所求.
解答:解:根据题意可得函数f(x)=(1⊕x)•x=
x , x≤1
x3,  x>1

 当x∈[0,1]时,f(x)=x∈[0,1].
当x∈(1,2]时,f(x)=x3∈(1,8].
综上可得,函数f(x)在[0,2]上的值域为[0,1]∪(1,8]=[0,8],
故选 C.
点评:本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在实数的原有运算法则中,定义新运算a?b=a-2b,则|x?(1-x)|+|(1-x)?x|>3的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数的原有运算法则中,我们补充定义新运算“⊕”:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2. 则函数f(x)=(1⊕x)•x-(2⊕x),x∈[-2,2]的最大值等于
6
6
(其中“•”和“-”仍为通常的乘法和减法)

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数的原有运算法则下,我们定义新运算“⊕”为:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)x-(2⊕x)(其中x∈[-2,2])的最大值等于(上式中“•”和“-”仍为通常的乘法和减法)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)在实数的原有运算法则中,定义新运算a?b=3a-b,则|x?(4-x)|+|(1-x)?x|>8的解集为
{x|x<-
1
8
,x>
15
8
}
{x|x<-
1
8
,x>
15
8
}

查看答案和解析>>

同步练习册答案