精英家教网 > 高中数学 > 题目详情
已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且cosBcosC-sinBsinC=
1
2

(1)求A;
(2)若a=2
3
,b+c=4
,求bc的值,并求△ABC的面积.
分析:(1)已知等式左边利用两角和与差的余弦函数公式化简,求出B+C的度数,即可确定出A的度数;
(2)利用余弦定理列出关系式,再利用完全平方公式变形,将a,b+c以及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.
解答:解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC-sinBsinC=cos(B+C)=
1
2

∴B+C=
π
3

则A=
3

(2)∵a=2
3
,b+c=4,cosA=-
1
2

∴由余弦定理得:a2=b2+c2-2bccosA=b2+c2+bc=(b+c)2-bc,即12=16-bc,
解得:bc=4,
则S△ABC=
1
2
bcsinA=
1
2
×4×
3
2
=
3
点评:此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c为直线,α、β、γ为平面,则下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;
(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C为△ABC的三内角,且其对分别为a、b、c,若A=120°,a=2
3
,b+c=4,则△ABC的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C为△ABC的三个内角,设f(A,B)=sin22A+cos22B-
3
sin2A-cos2B+2

(1)当f(A,B)取得最小值时,求C的大小;
(2)当C=
π
2
时,记h(A)=f(A,B),试求h(A)的表达式及定义域;
(3)在(2)的条件下,是否存在向量
p
,使得函数h(A)的图象按向量
p
平移后得到函数g(A)=2cos2A的图象?若存在,求出向量
p
的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为三条不同的直线,且a?平面M,b?平面N,M∩N=c,则下面四个命题中正确的是(  )

查看答案和解析>>

同步练习册答案