【题目】如图,已知某市穿城公路
自西向东到达市中心
后转向东北方向,
,现准备修建一条直线型高架公路
,在
上设一出入口
,在
上设一出入口
,且要求市中心
到
所在的直线距离为
.
![]()
(1)求
,
两出入口间距离的最小值;
(2)在公路
段上距离市中心
点
处有一古建筑
(视为一点),现设立一个以
为圆心,
为半径的圆形保护区,问如何在古建筑
和市中心
之间设计出入口
,才能使高架公路及其延长线不经过保护区?
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上顶点为
,左,右焦点分别为
,
,
的面积为
,直线
的斜率为
.
为坐标原点.
(1)求椭圆
的方程;
(2)设过点
的直线
与椭圆
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
.
,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
.
(1)若
为等差数列,且![]()
①求该等差数列的公差
;
②设数列
满足
,则当
为何值时,
最大?请说明理由;
(2)若
还同时满足:
①
为等比数列;
②
;
③对任意的正整数
存在自然数
,使得
、
、
依次成等差数列,试求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(3)从该校学生中随机调查60名学生,一周参加社区服务时间超过1小时的人数记为X,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,求X的分布列和数学期望.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间
,9:40~10:00记作
,10:00~10:20记作
,10:20~10:40记作
.例如:10点04分,记作时刻64.
![]()
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布
,其中
可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设椭圆
的左焦点为
,点
是椭圆与
轴负半轴的交点,经过
的直线
与椭圆交于点
,经过
且与
平行的直线与椭圆交于点
,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出
吨该商品可获利润
万元,未售出的商品,每
吨亏损
万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了
吨该商品.现以
(单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
![]()
(1)将
表示为
的函数,求出该函数表达式;
(2)根据直方图估计利润
不少于57万元的概率;
(3)根据频率分布直方图,估计一个销售季度内市场需求量
的平均数与中位数的大小(保留到小数点后一位).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙二人进行一次象棋比赛,每局胜者得1分,负者得0分(无平局),约定一方得4分时就获得本次比赛的胜利并且比赛结束,设在每局比赛中,甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立,已知前3局中,甲得1分,乙得2分.
(1)求甲获得这次比赛胜利的概率;
(2)设
表示从第4局开始到比赛结束所进行的局数,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com